Εμφάνιση απλής εγγραφής

dc.contributor.author Μπαριάμης, Δημήτριος el
dc.contributor.author Μαρούλης, Δημήτρης Ε. el
dc.contributor.author Ιακωβίδης, Δημήτρης Κ. el
dc.date.accessioned 2015-06-06T22:35:57Z
dc.date.available 2015-06-06T22:35:57Z
dc.date.issued 2015-06-07
dc.identifier.uri http://hdl.handle.net/11400/15371
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://www.sciencedirect.com/science/article/pii/S0895611109001165 en
dc.subject Gridding
dc.subject Rotation estimation
dc.subject Πλέγμα
dc.subject Υπολογισμός περιστροφής
dc.title Unsupervised SVM-based gridding for DNA microarray images en
heal.type journalArticle
heal.generalDescription Biomedical Image Technologies and Methods - BIBE 2008 en
heal.classification Technology
heal.classification Electronics
heal.classification Τεχνολογία
heal.classification Ηλεκτρονική
heal.classificationURI http://zbw.eu/stw/descriptor/10470-6
heal.classificationURI http://zbw.eu/stw/descriptor/10455-2
heal.classificationURI **N/A**-Τεχνολογία
heal.classificationURI **N/A**-Ηλεκτρονική
heal.identifier.secondary doi:10.1016/j.compmedimag.2009.09.005
heal.language en
heal.access campus
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. el
heal.publicationDate 2010-09
heal.bibliographicCitation Bariamis, D., Maroulis, D. and Iakovidis, D. (September 2010). Unsupervised SVM-based gridding for DNA microarray images. Computerized Medical Imaging and Graphics. 34(6). pp. 418-425. Elsevier B.V: 2010. Available from: http://www.sciencedirect.com/science/article/pii/S0895611109001165 [Accessed 29/10/2009] en
heal.abstract This paper presents a novel method for unsupervised DNA microarray gridding based on support vector machines (SVMs). Each spot is a small region on the microarray surface where chains of known DNA sequences are attached. The goal of microarray gridding is the separation of the spots into distinct cells. The positions of the spots on a DNA microarray image are first detected using image analysis operations and then a set of soft-margin linear SVM classifiers is used to estimate the optimal layout of the grid lines in the image. Each grid line is the separating line produced by one of the SVM classifiers, which maximizes the margin between two consecutive rows or columns of spots. The classifiers are trained using the spot locations as training vectors. The proposed method was evaluated on reference microarray images containing more than two million spots in total. The results illustrate its robustness in the presence of artifacts, noise and weakly expressed spots, as well as image rotation. The comparison to state of the art methods for microarray gridding reveals the superior performance of the proposed method. In 96.4% of the cases, the spots reside completely inside their respective grid cells. en
heal.publisher Elsevier B.V. en
heal.journalName Computerized Medical Imaging and Graphics en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: 1-s2.0-S0895611109001165-main.pdf
    Μέγεθος: 659.9Kb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες