Εμφάνιση απλής εγγραφής

dc.contributor.author Ιακωβίδης, Δημήτρης Κ. el
dc.contributor.author Κεραμυδάς, Ευστράτιος Γ. el
dc.contributor.author Μαρούλης, Δημήτρης Ε. el
dc.date.accessioned 2015-06-07T05:26:04Z
dc.date.available 2015-06-07T05:26:04Z
dc.date.issued 2015-06-07
dc.identifier.uri http://hdl.handle.net/11400/15376
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://www.sciencedirect.com/science/article/pii/S0933365710000369 en
dc.subject Thyroid nodules
dc.subject Θυρεοειδής αδένες
dc.subject Ultrasound imaging
dc.subject Υπέρηχη απεικόνιση
dc.title Fusion of fuzzy statistical distributions for classification of thyroid ultrasound patterns en
heal.type journalArticle
heal.generalDescription Knowledge Discovery and Computer-Based Decision Support in Biomedicine en
heal.classification Technology
heal.classification Electronics
heal.classification Τεχνολογία
heal.classification Ηλεκτρονική
heal.classificationURI http://zbw.eu/stw/descriptor/10470-6
heal.classificationURI http://zbw.eu/stw/descriptor/10455-2
heal.classificationURI **N/A**-Τεχνολογία
heal.classificationURI **N/A**-Ηλεκτρονική
heal.identifier.secondary doi:10.1016/j.artmed.2010.04.004
heal.language en
heal.access campus
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. el
heal.publicationDate 2010-09
heal.bibliographicCitation Iakovidis, D., Keramidas, E. and Maroulis, D. (September 2010). Fusion of fuzzy statistical distributions for classification of thyroid ultrasound patterns. Artificial Intelligence in Medicine. 50(1). pp. 33-41. Elsevier B.V: 2010. Available from: http://www.sciencedirect.com/science/article/pii/S0933365710000369 [Accessed 27/04/2010] en
heal.abstract Objective This paper proposes a novel approach for thyroid ultrasound pattern representation. Considering that texture and echogenicity are correlated with thyroid malignancy, the proposed approach encodes these sonographic features via a noise-resistant representation. This representation is suitable for the discrimination of nodules of high malignancy risk from normal thyroid parenchyma. Materials and methods The material used in this study includes a total of 250 thyroid ultrasound patterns obtained from 75 patients in Greece. The patterns are represented by fused vectors of fuzzy features. Ultrasound texture is represented by fuzzy local binary patterns, whereas echogenicity is represented by fuzzy intensity histograms. The encoded thyroid ultrasound patterns are discriminated by support vector classifiers. Results The proposed approach was comprehensively evaluated using receiver operating characteristics (ROCs). The results show that the proposed fusion scheme outperforms previous thyroid ultrasound pattern representation methods proposed in the literature. The best classification accuracy was obtained with a polynomial kernel support vector machine, and reached 97.5% as estimated by the area under the ROC curve. Conclusions The fusion of fuzzy local binary patterns and fuzzy grey-level histogram features is more effective than the state of the art approaches for the representation of thyroid ultrasound patterns and can be effectively utilized for the detection of nodules of high malignancy risk in the context of an intelligent medical system. en
heal.publisher Elsevier B.V. en
heal.journalName Artificial Intelligence in Medicine en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: 1-s2.0-S0933365710000369-main.pdf
    Μέγεθος: 529.0Kb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες