Εμφάνιση απλής εγγραφής

dc.contributor.author Κορδά, Αλεξάνδρα Ι. el
dc.contributor.author Ασβεστάς, Παντελής Α. el
dc.contributor.author Ματσόπουλος, Γεώργιος Κ. el
dc.contributor.author Βεντούρας, Ερρίκος Μ. el
dc.contributor.author Σμύρνης, Νικόλαος Π. el
dc.date.accessioned 2015-06-07T06:14:15Z
dc.date.available 2015-06-07T06:14:15Z
dc.date.issued 2015-06-07
dc.identifier.uri http://hdl.handle.net/11400/15383
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://www.sciencedirect.com/science/article/pii/S0010482515000803 en
dc.subject Blinks
dc.subject Neural network
dc.subject Αντιδράσεις
dc.subject Νευρωνικό δίκτυο
dc.title Automatic identification of oculomotor behavior using pattern recognition techniques en
heal.type journalArticle
heal.classification Medicine
heal.classification Biomedical engineering
heal.classification Ιατρική
heal.classification Βιοϊατρική τεχνολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85014237
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Βιοϊατρική τεχνολογία
heal.identifier.secondary doi:10.1016/j.compbiomed.2015.03.002
heal.language en
heal.access campus
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2015-05
heal.bibliographicCitation Korda, A., Asvestas, P., Matsopoulos, G., Ventouras, E. and Smyrnis, N. (May 2015). Automatic identification of oculomotor behavior using pattern recognition techniques. Computers in Biology and Medicine. 60. pp. 151-162. Elsevier Ltd: 2015. Available from: http://www.sciencedirect.com/science/article/pii/S0010482515000803 [Accessed 11/03/2015] en
heal.abstract In this paper, a methodological scheme for identifying distinct patterns of oculomotor behavior such as saccades, microsaccades, blinks and fixations from time series of eye׳s angular displacement is presented. The first step of the proposed methodology involves signal detrending for artifacts removal and estimation of eye׳s angular velocity. Then, feature vectors from fourteen first-order statistical features are formed from each angular displacement and velocity signal using sliding, fixed-length time windows. The obtained feature vectors are used for training and testing three artificial neural network classifiers, connected in cascade. The three classifiers discriminate between blinks and non-blinks, fixations and non-fixations and saccades and microsaccades, respectively. The proposed methodology was tested on a dataset from 1392 subjects, each performing three oculomotor fixation conditions. The average overall accuracy of the three classifiers, with respect to the manual identification of eye movements by experts, was 95.9%. The proposed methodological scheme provided better results than the well-known Velocity Threshold algorithm, which was used for comparison. The findings of the present study indicate that the utilization of pattern recognition techniques in the task of identifying the various eye movements may provide accurate and robust results. en
heal.publisher Elsevier Ltd en
heal.journalName Computers in Biology and Medicine en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: 1-s2.0-S0010482515000803-main.pdf
    Μέγεθος: 3.665Mb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες