dc.contributor.author | Κορδά, Αλεξάνδρα Ι. | el |
dc.contributor.author | Ασβεστάς, Παντελής Α. | el |
dc.contributor.author | Ματσόπουλος, Γεώργιος Κ. | el |
dc.contributor.author | Βεντούρας, Ερρίκος Μ. | el |
dc.contributor.author | Σμύρνης, Νικόλαος Π. | el |
dc.date.accessioned | 2015-06-07T06:14:15Z | |
dc.date.available | 2015-06-07T06:14:15Z | |
dc.date.issued | 2015-06-07 | |
dc.identifier.uri | http://hdl.handle.net/11400/15383 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://www.sciencedirect.com/science/article/pii/S0010482515000803 | en |
dc.subject | Blinks | |
dc.subject | Neural network | |
dc.subject | Αντιδράσεις | |
dc.subject | Νευρωνικό δίκτυο | |
dc.title | Automatic identification of oculomotor behavior using pattern recognition techniques | en |
heal.type | journalArticle | |
heal.classification | Medicine | |
heal.classification | Biomedical engineering | |
heal.classification | Ιατρική | |
heal.classification | Βιοϊατρική τεχνολογία | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh00006614 | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh85014237 | |
heal.classificationURI | **N/A**-Ιατρική | |
heal.classificationURI | **N/A**-Βιοϊατρική τεχνολογία | |
heal.identifier.secondary | doi:10.1016/j.compbiomed.2015.03.002 | |
heal.language | en | |
heal.access | campus | |
heal.recordProvider | Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. | el |
heal.publicationDate | 2015-05 | |
heal.bibliographicCitation | Korda, A., Asvestas, P., Matsopoulos, G., Ventouras, E. and Smyrnis, N. (May 2015). Automatic identification of oculomotor behavior using pattern recognition techniques. Computers in Biology and Medicine. 60. pp. 151-162. Elsevier Ltd: 2015. Available from: http://www.sciencedirect.com/science/article/pii/S0010482515000803 [Accessed 11/03/2015] | en |
heal.abstract | In this paper, a methodological scheme for identifying distinct patterns of oculomotor behavior such as saccades, microsaccades, blinks and fixations from time series of eye׳s angular displacement is presented. The first step of the proposed methodology involves signal detrending for artifacts removal and estimation of eye׳s angular velocity. Then, feature vectors from fourteen first-order statistical features are formed from each angular displacement and velocity signal using sliding, fixed-length time windows. The obtained feature vectors are used for training and testing three artificial neural network classifiers, connected in cascade. The three classifiers discriminate between blinks and non-blinks, fixations and non-fixations and saccades and microsaccades, respectively. The proposed methodology was tested on a dataset from 1392 subjects, each performing three oculomotor fixation conditions. The average overall accuracy of the three classifiers, with respect to the manual identification of eye movements by experts, was 95.9%. The proposed methodological scheme provided better results than the well-known Velocity Threshold algorithm, which was used for comparison. The findings of the present study indicate that the utilization of pattern recognition techniques in the task of identifying the various eye movements may provide accurate and robust results. | en |
heal.publisher | Elsevier Ltd | en |
heal.journalName | Computers in Biology and Medicine | en |
heal.journalType | peer-reviewed | |
heal.fullTextAvailability | true |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: