Εμφάνιση απλής εγγραφής

dc.contributor.author Σπύρου, Ευάγγελος el
dc.contributor.author Μυλωνάς, Φοίβος el
dc.date.accessioned 2015-06-07T08:26:50Z
dc.date.available 2015-06-07T08:26:50Z
dc.date.issued 2015-06-07
dc.identifier.uri http://hdl.handle.net/11400/15413
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://www.sciencedirect.com/science/article/pii/S0925231215005974 en
dc.subject Information processing
dc.subject Tags
dc.subject Επεξεργασία πληροφοριών
dc.subject Ετικέτες
dc.title Analyzing Flickr metadata to extract location-based information and semantically organize its photo content en
heal.type journalArticle
heal.classification Computer science
heal.classification Computer programming
heal.classification Πληροφορική
heal.classification Προγραμματισμός
heal.classificationURI http://data.seab.gr/concepts/77de68daecd823babbb58edb1c8e14d7106e83bb
heal.classificationURI http://skos.um.es/unescothes/C00749
heal.classificationURI **N/A**-Πληροφορική
heal.classificationURI **N/A**-Προγραμματισμός
heal.identifier.secondary doi:10.1016/j.neucom.2014.12.104
heal.language en
heal.access campus
heal.recordProvider Τ.Ε.Ι Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Πληροφορικής Τ.Ε. el
heal.publicationDate 2015
heal.bibliographicCitation Spyrou, E. and Mylonas, P. (2015). Analyzing Flickr metadata to extract location-based information and semantically organize its photo content. Neurocomputing. Elsevier B.V: 2015. Available from: http://www.sciencedirect.com/science/article/pii/S0925231215005974 [Accessed 29/05/2015] en
heal.abstract The first step towards efficient social media content analysis is to understand it and identify means of user interaction. Trying to study the problem from the user perspective, we analyze user-generated photos uploaded to famous Flickr social network, in order to extract meaningful semantic trends covering specific research aspects, like content popularity, spatial areas of interest and popular events. Initially, we select a geographical area of social interest, like a city center, defined by a strict bounding box. We then cluster photos taken within the box based on their geo-tagging metadata information (i.e., their latitude and longitude information) and divide large areas into smaller groups of fixed size, which we will refer to as “geo-clusters”. Within these geo-clusters, we further identify semantically meaningful “places” of user interest, by analyzing any additional textual metadata available, i.e., user selected tags that characterize each place's photos. By post-processing the latter, we are then able to rank them and thus select the most appropriate tags that describe landmarks and other places of interest, as well as events occurring within these places of interest. As a next step, we place these tags on a map and help users to intuitively visualize places of interest and the actual photo content at a glance. Finally, we examine the temporal dynamics of analyzed photos over a long period of time, so as to obtain the underlying trends to be identified within this kind of social media generated content. en
heal.publisher Elsevier B.V en
heal.journalName Neurocomputing en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: 1-s2.0-S0925231215005974-main.pdf
    Μέγεθος: 1.582Mb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες