Εμφάνιση απλής εγγραφής

dc.contributor.author Σιδηρόπουλος, Κωνσταντίνος el
dc.contributor.author Κωστόπουλος, Σπύρος el
dc.contributor.author Γκλώτσος, Δημήτρης el
dc.contributor.author Αθανασιάδης, Εμμανουήλ el
dc.contributor.author Δημητρόπουλος, Νίκος el
dc.date.accessioned 2015-06-07T15:02:37Z
dc.date.available 2015-06-07T15:02:37Z
dc.date.issued 2015-06-07
dc.identifier.uri http://hdl.handle.net/11400/15476
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://link.springer.com en
dc.subject Graphics processing units
dc.subject Multimodality
dc.subject Parallel processing
dc.subject Μονάδες επεξεργασίας γραφικών
dc.subject Πολυτροπικότητα
dc.subject Παράλληλη επεξεργασία
dc.title Multimodality GPU-based computer-assisted diagnosis of breast cancer using ultrasound and digital mammography images en
heal.type journalArticle
heal.classification Medicine
heal.classification Medical physics
heal.classification Ιατρική
heal.classification Ιατρική φυσική
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://skos.um.es/unesco6/240606
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Ιατρική φυσική
heal.keywordURI http://id.loc.gov/authorities/subjects/sh2009010908
heal.contributorName Stonham, John en
heal.contributorName Κάβουρας, Διονύσης el
heal.identifier.secondary DOI: 10.1007/s11548-013-0813-y
heal.language en
heal.access campus
heal.publicationDate 2013
heal.bibliographicCitation Sidiropoulos, K., Kostopoulos, S., Glotsos, D., Athanasiadis, E., Dimitropoulos, N. et al. (2013) Multimodality GPU-based computer-assisted diagnosis of breast cancer using ultrasound and digital mammography images. "International Journal of Computer Assisted Radiology and Surgery", 8 (4), p.547-560 en
heal.abstract Purpose To improve the computer-aided diagnosis of breast lesions, by designing a pattern recognition system (PR-system) on commercial graphics processing unit (GPU) cards using parallel programming and textural information from multimodality imaging. Material and methods Patients with histologically verified breast lesions underwent both ultrasound (US) and digital mammography (DM), lesions were outlined on the images by an experienced radiologist, and textural features were calculated. The PR-system was designed to provide highest possible precision by programming in parallel the multiprocessors of the NVIDIA's GPU cards, GeForce 8800GT or 580GTX, and using the CUDA programming framework and C++. The PR-system was built around the probabilistic neural network classifier, and its performance was evaluated by a re-substitution method, for estimating the system's highest accuracy, and by the external cross-validation method, for assessing the PR-system's unbiased accuracy to new, "unseen" by the system, data. Results Classification accuracies for discriminating malignant from benign lesions were as follows: 85.5 % using US-features alone, 82.3 % employing DM features alone, and 93.5 % combining US and DM features. Mean accuracy to new "unseen" data for the combined US and DM features was 81 %. Those classification accuracies were about 10 % higher than accuracies achieved on a single CPU, using sequential programming methods, and 150-fold faster. Conclusion The proposed PR-system improves breast-lesion discrimination accuracy, it may be redesigned on site when new verified data are incorporated in its depository, and it may serve as a second opinion tool in a clinical environment. en
heal.journalName International Journal of Computer Assisted Radiology and Surgery en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες