Εμφάνιση απλής εγγραφής

dc.contributor.author Τσαντής, Σταύρος el
dc.contributor.author Δημητρόπουλος, Νίκος Δ. el
dc.contributor.author Κάβουρας, Διονύσης el
dc.contributor.author Νικηφορίδης, Γεώργιος Κ. el
dc.date.accessioned 2015-06-07T16:15:45Z
dc.date.available 2015-06-07T16:15:45Z
dc.date.issued 2015-06-07
dc.identifier.uri http://hdl.handle.net/11400/15483
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source www.sciencedirect.com/science/journal/08956111 en
dc.subject Morphological features
dc.subject Probabilistic neural networks
dc.subject Support vector machines
dc.subject Thyroid ultrasound
dc.subject Wavelet local maxima features
dc.subject Μορφολογικά χαρακτηριστικά
dc.subject Πιθανοτικά νευρωνικά δίκτυα
dc.subject Μηχανές διανυσμάτων
dc.subject Υπέρηχος θυρεοειδούς
dc.title Morphological and wavelet features towards sonographic thyroid nodules evaluation en
heal.type journalArticle
heal.classification Medicine
heal.classification Technology
heal.classification Ιατρική
heal.classification Τεχνολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://zbw.eu/stw/descriptor/10470-6
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Τεχνολογία
heal.keywordURI http://id.loc.gov/authorities/subjects/sh2008009003
heal.identifier.secondary DOI: 10.1016/j.compmedimag.2008.10.010
heal.language en
heal.access campus
heal.recordProvider Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2009
heal.bibliographicCitation Tsantis, S., Dimitropoulos, N., Cavouras, D. and Nikiforidis, G. (2009) Morphological and wavelet features towards sonographic thyroid nodules evaluation. "Computerized Medical Imaging and Graphics", 33 (2), p. 91-99. Available from: http://www.sciencedirect.com/science/article/pii/S0895611108001055 [Accessed: 07/06/2015]. en
heal.abstract This paper presents a computer-based classification scheme that utilized various morphological and novel wavelet-based features towards malignancy risk evaluation of thyroid nodules in ultrasonography. The study comprised 85 ultrasound images-patients that were cytological confirmed (54 low-risk and 31 high-risk). A set of 20 features (12 based on nodules boundary shape and 8 based on wavelet local maxima located within each nodule) has been generated. Two powerful pattern recognition algorithms (support vector machines and probabilistic neural networks) have been designed and developed in order to quantify the power of differentiation of the introduced features. A comparative study has also been held, in order to estimate the impact speckle had onto the classification procedure. The diagnostic sensitivity and specificity of both classifiers was made by means of receiver operating characteristics (ROC) analysis. In the speckle-free feature set, the area under the ROC curve was 0.96 for the support vector machines classifier whereas for the probabilistic neural networks was 0.91. In the feature set with speckle, the corresponding areas under the ROC curves were 0.88 and 0.86 respectively for the two classifiers. The proposed features can increase the classification accuracy and decrease the rate of missing and misdiagnosis in thyroid cancer control. en
heal.publisher Wong, Stephen en
heal.journalName Computerized Medical Imaging and Graphics en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: Morphological and wavelet features ...
    Μέγεθος: 1.023Mb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες