Εμφάνιση απλής εγγραφής

dc.contributor.author Τομάρας, Πέτρος el
dc.contributor.author Νταλιάνης, Κλήμης el
dc.date.accessioned 2015-06-07T16:24:32Z
dc.date.available 2015-06-07T16:24:32Z
dc.date.issued 2015-06-07
dc.identifier.uri http://hdl.handle.net/11400/15486
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://www.sciencedirect.com/science/article/pii/S1877042815012549 en
dc.subject Social media
dc.subject User popularity
dc.subject Κοινωνικά μέσα δικτύωσης
dc.subject Δημοτικότητα χρήστη
dc.title Evaluating the impact of posted advertisements on content sharing sites en
heal.type conferenceItem
heal.secondaryTitle an unsupervised social computing approach en
heal.generalDescription Procedia - Social and Behavioral Sciences. vol. 175. pp. 219-226. en
heal.classification Economics
heal.classification Marketing
heal.classification Οικονομία
heal.classification Μάρκετινγκ
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85040850
heal.classificationURI http://skos.um.es/unescothes/C02413
heal.classificationURI **N/A**-Οικονομία
heal.classificationURI **N/A**-Μάρκετινγκ
heal.keywordURI http://id.loc.gov/authorities/subjects/sh2006007023
heal.identifier.secondary doi:10.1016/j.sbspro.2015.01.1194
heal.language en
heal.access free
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Διοίκησης και Οικονομίας. Τμήμα Εμπορίας και Διαφήμισης. el
heal.publicationDate 2015-02
heal.bibliographicCitation Tomaras, P. and Ntalianis, K. (2014). Evaluating the impact of posted advertisements on content sharing sites: an unsupervised social computing approach. In the proceedings of the 3rd International Conference on Strategic Innovative Marketing (IC-SIM 2014). Madrid, Spain, 1st-4th September 2014. Elsevier Ltd: 2015. Available from: http://www.sciencedirect.com/science/article/pii/S1877042815012549 [Accessed 03/03/2015] en
heal.abstract During the last decade social media have greatly flourished, reaching rapidly the amazing figures of today. According to the Search Engine Journal (http://www.searchenginejournal.com/25-insane-social-media-facts/79645/): (a) currently 684,478 pieces of content are shared on Facebook every minute, (b) people are spending 1 out of every 7 minutes on Facebook when online, (c) 93% of marketers are using social media, however, only 9% of marketing companies have full-time bloggers and (d) around 46% of web users will look towards social media when making a purchase. It is obvious that businesses are tapping into social media, since they find them as a rich source of information and a business execution platform for product design and innovation, consumer and stakeholder relations management, and marketing. For this reason it is very useful to evaluate the impact of each posted advertisement. Towards this direction several supervised works have been presented in literature mainly focusing on traditional media. However, the impact of advertisements on new media (such as social networks, blogs etc.) has not been studied thoroughly yet. Additionally unsupervised impact evaluation is a very challenging problem. In this paper a novel unsupervised social computing approach is proposed that effectively performs both on open social media (twitter, blogs, microblogs etc) and on rule-stringent media (e.g. Facebook, LinkedIn etc). Our scheme algorithmically estimates the importance of each advertisement by considering both explicit interactions between advertisements and social media users and users’ popularity. The proposed method operates without human intervention and training and it is applied on real content posted on social media. Experimental results provide an insight of the performance of our system and specific areas are detected for future research. en
heal.publisher Elsevier Ltd en
heal.fullTextAvailability true
heal.conferenceName International Conference on Strategic Innovative Marketing (IC-SIM 2014) en
heal.conferenceItemType full paper


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: 1-s2.0-S1877042815012549-main.pdf
    Μέγεθος: 3.353Mb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες