Εμφάνιση απλής εγγραφής

dc.contributor.author Καλατζής, Ιωάννης el
dc.contributor.author Παππάς, Δ. el
dc.contributor.author Πήλιουρας, Νικόλαος el
dc.contributor.author Κάβουρας, Διονύσης Α. el
dc.date.accessioned 2015-06-07T22:06:05Z
dc.date.issued 2015-06-08
dc.identifier.uri http://hdl.handle.net/11400/15574
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://informahealthcare.com/doi/abs/10.1080/14639230310001613449 en
dc.subject Computer-based classification
dc.subject Diabetes mellitus type II
dc.subject Ταξινόμηση μέσω υπολογιστή
dc.subject Διαβήτης τύπου ΙΙ
dc.title Support vector machines based analysis of brain SPECT images for determining cerebral abnormalities in asymptomatic diabetic patients en
heal.type journalArticle
heal.classification Medicine
heal.classification Biomedical engineering
heal.classification Ιατρική
heal.classification Βιοϊατρική τεχνολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85014237
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Βιοϊατρική τεχνολογία
heal.identifier.secondary DOI: 10.1080/14639230310001613449
heal.dateAvailable 10000-01-01
heal.language en
heal.access forever
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2003
heal.bibliographicCitation Kalatzis, I., Pappas, D., Piliouras, N. and Cavouras, D. (2003). Support vector machines based analysis of brain SPECT images for determining cerebral abnormalities in asymptomatic diabetic patients. Informatics for Health and Social Care. 28(3). pp. 221-230. Informa Plc: 2003. en
heal.abstract Purpose: An image processing method was developed to investigate whether brain SPECT images of patients with diabetes mellitus type II (DMII) and no brain damage differ from those of normal subjects. Materials and methods: Twenty-five DMII patients and eight healthy volunteers underwent brain 99mTc-Bicisate SPECT examination. A semi-automatic method, allowing for physician's interaction, was developed to delineate specific brain regions (ROIs) on the SPECT images. Twenty-eight features from the grey-level histogram and the spatial-dependence matrix were computed from numerous small image-samples collected from each specific ROI. Classification into ‘diabetics’ and ‘non-diabetics’ was performed for each ROI separately. The classical least squares-minimum distance (LSMD) classifier and the recently developed support vector machines (SVM) classifier were used. System performance was evaluated by means of the leave-one-out method; one sample was left out, the classifier was trained by the rest of the samples, and the left-out sample was classified. By repeating for all samples, the classifier's performance could be tested on data not incorporated in its design. Results: Highest classification accuracies (LSMD: 97.8%, SVM: 99.1%) were achieved at the right occipital lobule employing two features, the standard deviation and entropy. For the rest of the ROIs classification accuracies ranged between 84.5 and 98.6%. Conclusion: Our findings indicate cerebral blood flow disruption in patients with DMII. The proposed system may assist physicians in evaluating cerebral blood flow in patients with DMII undergoing brain SPECT. en
heal.publisher Informa Plc en
heal.journalName Informatics for Health and Social Care en
heal.journalType peer-reviewed
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες