Εμφάνιση απλής εγγραφής

dc.contributor.author Νίνος, Κωνσταντίνος el
dc.contributor.author Κωστόπουλος, Σπύρος el
dc.contributor.author Σιδηρόπουλος, Κωνσταντίνος el
dc.contributor.author Καλαϊτζής, Ιωάννης el
dc.contributor.author Γκλώτσος, Δημήτρης el
dc.date.accessioned 2015-06-10T22:39:04Z
dc.date.issued 2015-06-11
dc.identifier.uri http://hdl.handle.net/11400/15663
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://www.aqch.com/ en
dc.subject Καρκίνος του λάρυγγα
dc.subject Ιστοπαθολογική εξέταση
dc.subject Histopathology
dc.title Computer-based image analysis system designed to differentiate between low-grade and high-grade laryngeal cancer cases en
heal.type journalArticle
heal.classification Medicine
heal.classification Oncology
heal.classification Ιατρική
heal.classification Ογκολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85094724
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Ογκολογία
heal.contributorName Αθανασιάδης, Εμμανουήλ el
heal.contributorName Ραβαζούλα, Παναγιώτα el
heal.contributorName Παναγιωτάκης, Γιώργος el
heal.contributorName Οικονόμου, Γιώργος el
heal.contributorName Κάβουρας, Διονύσης el
heal.dateAvailable 10000-01-01
heal.language en
heal.access forever
heal.publicationDate 2013
heal.bibliographicCitation Ninos, K., Kostopoulos, S., Sidiropoulos, K., Kalatzis, I., Glotsos, D. et al. (2013) Computer-based image analysis system designed to differentiate between low-grade and high-grade laryngeal cancer cases. "Analytical and Quantitative Cytology and Histology", 35 (5), p.261-272 en
heal.abstract To design a pattern recognition (PR) system for discriminating between low- and high-grade laryngeal cancer cases, employing immunohistochemically stained, for p63 expression, histopathology images. STUDY DESIGN: The PR system was designed to assist in the physician's diagnosis for improving patient survival. The material comprised 55 verified cases of laryngeal cancer, 21 of low-grade and 34 of high-grade malignancy. Histopathology images were first processed for automatically segmenting p63 expressed nuclei. Fiftytwo features were next extracted from the segmented nuclei, concerning nuclei texture, shape, and physical topology in the image. Those features and the Probabilistic Neural Network classifier were used to design the PR system on the multiprocessors of the Nvidia 580 GTX graphics processing unit (GPU) card using the Compute Unified Device Architecture parallel programming model and C++ programming language. RESULTS: PR system performance in classifying laryngeal cancer cases as low grade and high grade was 85.7% and 94.1%, respectively. The system's overall accuracy was 90.9%, using 7 features, and its estimated accuracy to "unseen" by the system cases was 80%. CONCLUSION: Optimum system design was feasible after employing parallel processing techniques and GPU technology. The proposed system was structured so as to function in a clinical environment, as a research tool, and with the capability of being redesigned on site when new verified cases are added to its repository. (Anal Quant Cytopathol Histopathol 2013;35:261-272). en
heal.journalName Analytical and Quantitative Cytology and Histology en
heal.journalType peer-reviewed
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες