dc.contributor.author | Melhart, David | en |
dc.contributor.author | Sfikas, Konstantinos | en |
dc.contributor.author | Giannakakis, Giorgos | en |
dc.contributor.author | Yannakakis, Georgios N. | en |
dc.contributor.author | Liapis, Antonios | en |
dc.date.accessioned | 2019-02-16T19:10:28Z | |
dc.date.available | 2019-02-16T19:10:28Z | |
dc.date.issued | 2019-02-16 | |
dc.identifier.uri | http://hdl.handle.net/11400/20233 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.title | A Study on Affect Model Validity: Nominal vs Ordinal Labels | en |
heal.type | conferenceItem | |
heal.language | en | |
heal.access | free | |
heal.publicationDate | 2018 | |
heal.bibliographicCitation | David Melhart, Konstantinos Sfikas, Giorgos Giannakakis, Georgios N. Yannakakis and Antonios Liapis: "A Study on Affect Model Validity: Nominal vs Ordinal Labels" in Proceedings of the IJCAI workshop on AI and Affective Computing, 2018 | en |
heal.abstract | The question of representing emotion computationally remains largely unanswered: popular approaches require annotators to assign a magnitude (or a class) of some emotional dimension, while an alternative is to focus on the relationship between two or more options.Recent evidence in affective computing suggests that following a methodology of ordinal annotations and processing leads to better reliability and validity of the model. This pa-per compares the generality of classification methods versus preference learning methods in predicting the levels of arousal in two widely used affective datasets. Findings of this initial study further validate the hypothesis that approaching affect labels as ordinal data and building models via preference learning yields models of better validity. | en |
heal.sponsor | This publication is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 693150 | en |
heal.fullTextAvailability | false | |
heal.conferenceName | 2018 IJCAI workshop on AI and Affective Computin | en |
heal.conferenceItemType | full paper |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: