Εμφάνιση απλής εγγραφής

dc.contributor.author Karavolos, Daniel en
dc.contributor.author Liapis, Antonios en
dc.contributor.author Yannakakis, Georgios N. en
dc.date.accessioned 2019-02-16T19:21:00Z
dc.date.available 2019-02-16T19:21:00Z
dc.date.issued 2019-02-16
dc.identifier.uri http://hdl.handle.net/11400/20234
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.title Using a Surrogate Model of Gameplay for Automated Level Design en
heal.type conferenceItem
heal.language en
heal.access free
heal.publicationDate 2018
heal.bibliographicCitation Daniel Karavolos, Antonios Liapis and Georgios N. Yannakakis: "Using a Surrogate Model of Gameplay for Automated Level Design" in Proceedings of the IEEE Conference on Computational Intelligence and Games, 2018. en
heal.abstract This paper describes how a surrogate model of the interrelations between different types of content in the samegame can be used for level generation. Specifically, the model associates level structure and game rules with gameplay outcomes in a shooter game. We use a deep learning approach to train a model on simulated play throughs of two-player death match games, in diverse levels and with different character classes per player. Findings in this paper show that the model can predict the duration and winner of the match given a top-down map of the level and the parameters of the two players’ character classes. With this surrogate model in place, we investigate which level structures would result in a balanced match of short,medium or long duration for a given set of character classes.Using evolutionary computation, we are able to discover levels which improve the balance between different classes. This opens up potential applications for a designer tool which can adapt a human authored map to fit the designer’s desired gameplay outcomes, taking account of the game’s rules en
heal.sponsor The CROSSCULT project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 693150 en
heal.fullTextAvailability false
heal.conferenceName 2018 IEEE Conference on Computational en
heal.conferenceItemType full paper


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες