Εμφάνιση απλής εγγραφής

dc.contributor.author Higham, Desmond J. en
dc.contributor.author Φαμέλης, Ιωάννης Θ. el
dc.date.accessioned 2014-12-24T11:59:44Z
dc.date.available 2014-12-24T11:59:44Z
dc.date.issued 2014-12-24
dc.identifier.uri http://hdl.handle.net/11400/3158
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source University of Dundee en
dc.subject Computer science--Mathematics--Congresses
dc.subject Soft computing
dc.subject Αλγόριθμοι
dc.subject Runge-Kutta method
dc.subject error control
dc.subject Fixed point theory--Congresses
dc.subject delay
dc.subject Μαθηματικά
dc.subject Πληροφορική
dc.title Numerical analysis report en
heal.type conferenceItem
heal.secondaryTitle stability of adaptive algoritms for delay differential equation el
heal.classification Computer science
heal.classification Computer programming
heal.classification Πληροφορική
heal.classification Προγραμματισμός
heal.classificationURI http://data.seab.gr/concepts/77de68daecd823babbb58edb1c8e14d7106e83bb
heal.classificationURI http://skos.um.es/unescothes/C00749
heal.classificationURI **N/A**-Πληροφορική
heal.classificationURI **N/A**-Προγραμματισμός
heal.keywordURI http://id.loc.gov/authorities/subjects/sh2008101221
heal.keywordURI http://id.loc.gov/authorities/subjects/sh96004789
heal.keywordURI http://id.loc.gov/authorities/subjects/sh2009124398
heal.language en
heal.access campus
heal.recordProvider ΤΕΙ Αθήνας, Σχολή Τεχνολογικών Εφαρμογών, Τμήμα Μηχανικών Πληροφορικής el
heal.publicationDate 1992-12
heal.bibliographicCitation Higham, D. J. & Famelis, I.TH. (1992) Numerical analysis report:stability of adaptive algoritms for delay differential equation. December 1992. Dundee:University of Dundee el
heal.abstract This work examines the performance of explicit, adaptive, Runge-Kutta based algorithms for solving delay differential equations. The results of Hall [ACM Trans. Math. Soft. 11 (1985)] for ordinary differential equation (ODE) solvers are extended by adding a constant-delay term to the test equation. It is shown that by regarding an algorithm as a discrete nonlinear map, fixed points, or equilibrium states, can be identified, and their stability can be determined numerically. Specific results are derived for a low order Runge-Kutta pair coupled with oither a linear or cubic interpolant. The qualitative performance is shown to depend upon the interpolation process, in addition to the ODE formula and the error control mechanism. Further, and in contrast to the case for standard ODEs, it is found that the parameters in the test equation also influence the behaviour. This phenomenon has important implications for the design of robust algorithms. The choice of error tolerance, however, is shown not to affect the stability of the equilibrium states. Numerical tests are used to illustrate the analysis. Finally, a general result is given that guarantees the existence of equilibrium states for a large class of algorithms. el
heal.publisher University of Dundee en
heal.fullTextAvailability true
heal.conferenceName Numerical analysis report:stability of adaptive algoritms for delay differential equation en
heal.conferenceItemType full paper


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: NUMERICAL ANALYSIS REPORT.pdf
    Μέγεθος: 517.5Kb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες