Εμφάνιση απλής εγγραφής

dc.contributor.author Τσέλιος, Κωνσταντίνος el
dc.contributor.author Ζώης, Ηλίας Ν. el
dc.contributor.author Σιώρης, Ηλίας el
dc.contributor.author Νασιόπουλος, Αθανάσιος Α. el
dc.contributor.author Οικονόμου, Γεώργιος el
dc.date.accessioned 2015-01-09T13:59:38Z
dc.date.issued 2015-01-09
dc.identifier.uri http://hdl.handle.net/11400/3624
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.subject Image classification
dc.subject Handwriting recognition
dc.subject Ταξινόμηση εικόνων
dc.subject Αναγνώριση χειρογράφου
dc.title Grid-based feature distributions for off-line signature verification en
heal.type journalArticle
heal.classification Electrical engineering
heal.classification Electronics
heal.classification Ηλεκτρολογική μηχανική
heal.classification Ηλεκτρονική
heal.classificationURI http://skos.um.es/unescothes/C01311
heal.classificationURI http://zbw.eu/stw/descriptor/10455-2
heal.classificationURI **N/A**-Ηλεκτρολογική μηχανική
heal.classificationURI **N/A**-Ηλεκτρονική
heal.identifier.secondary doi: 10.1049/iet-bmt.2011.0011
heal.dateAvailable 10000-01-01
heal.language en
heal.access forever
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. el
heal.publicationDate 2012
heal.bibliographicCitation Tselios, K., Zois, E., Siores, E., Nassiopoulos, A. and Economou G. (March 2012). Grid-based feature distributions for off-line signature verification. IET Biometrics. 1(1). pp. 72-81. The Institution of Engineering and Technology. en
heal.abstract In this work, a feature extraction method is presented for handwritten signature verification. The proposed algorithm models the handwritten elements of a signature trace by probabilistically counting the distribution of fixed two- and three-step pixel paths, conditioned that they are confined within predetermined Chebyshev distances of two and three, respectively. This representation correlates the pixel transitions along the signature trace, with the writing style of an individual. Various partitions of the signature image into a group of sub-images were applied in order to define the overall dimensionality of the feature. In order to evaluate the classification efficiency of the introduced method, a number of verification strategies are implemented by making use of two internationally accepted and one domestic datasets. In all schemes, similarity scores and hard margin support vector machines (SVMs) are combined or evaluated as separate entities. Additionally, zoning the extracted feature vector into combinations of tetrads and heptads, which in turn are fed into the afore-mentioned classification schemes, is exploited. Results, derived from random or simple imitations as well as simulated (skilled) forgery indicate that the proposed method achieves noticeably low equal error rates and it is expected to provide a powerful discriminative representation of the handwritten signature. en
heal.publisher The Institution of Engineering and Technology en
heal.journalName IET Biometrics en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες