Εμφάνιση απλής εγγραφής

dc.contributor.author Ζώης, Ηλίας Ν. el
dc.contributor.author Νασιόπουλος, Αθανάσιος Α. el
dc.contributor.author Τσέλιος, Κωνσταντίνος el
dc.contributor.author Σιώρης, Ηλίας el
dc.contributor.author Οικονόμου, Γεώργιος el
dc.date.accessioned 2015-01-12T16:21:33Z
dc.date.issued 2015-01-12
dc.identifier.uri http://hdl.handle.net/11400/3850
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.subject Off-line signature recognition
dc.subject Computer systems--Verification
dc.subject Αναγνώριση υπογραφής εκτός σύνδεσης
dc.subject Επαλήθευση
dc.title Off-line signature verification using two step transitional features en
heal.type conferenceItem
heal.generalDescription Proceedings en
heal.classification Technology
heal.classification Electronics
heal.classification Τεχνολογία
heal.classification Ηλεκτρονική
heal.classificationURI http://zbw.eu/stw/descriptor/10470-6
heal.classificationURI http://zbw.eu/stw/descriptor/10455-2
heal.classificationURI **N/A**-Τεχνολογία
heal.classificationURI **N/A**-Ηλεκτρονική
heal.keywordURI http://id.loc.gov/authorities/subjects/sh2008002946
heal.dateAvailable 10000-01-01
heal.language en
heal.access forever
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. el
heal.publicationDate 2011
heal.bibliographicCitation Zois, E., Nassiopoulos, A., Tselios, K., Sioes, E. and Economou, G. (2011). Off-line signature verification using two step transitional features. In the IAPR Conference on Machine Vision Applications. Nara, 13th-15th June 2011. en
heal.abstract In this work, a new approach for off-line signature recognition and verification is presented and described. A subset of the line, concave and convex family of curvature features is used to represent the signatures. Two major constraints are applied to the feature extraction algorithm in order to model the two step transitional probabilities of the signature pixels. Segmentation of the signature trace is enabled using a window which is centred upon the centre of mass of the thinned image. Partitioning of the image leads to a multidimensional feature vector which provides useful spatial details of the acquired handwritten image. The classification protocol followed in this work relies on a hard margin support vector machine. Our method was applied to two databases, the first taken from the literature while the second created by the authors. In order to provide comparable results for the first stage signature verification system, we have applied an already published feature extraction method while keeping the same classification protocol. Primary evaluation schemes on both corpuses provide very encouraging verification results for the Average Error. en
heal.publisher [χ.ό.] el
heal.fullTextAvailability true
heal.conferenceName IAPR Conference on Machine Vision Applications en
heal.conferenceItemType full paper


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες