Εμφάνιση απλής εγγραφής

dc.contributor.author Τσέλιος, Κωνσταντίνος el
dc.contributor.author Ζώης, Ηλίας Ν. el
dc.contributor.author Νασιόπουλος, Αθανάσιος Α. el
dc.contributor.author Καραμπέτσος, Σωτήριος Χ. el
dc.date.accessioned 2015-01-12T16:40:21Z
dc.date.issued 2015-01-12
dc.identifier.uri http://hdl.handle.net/11400/3853
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.subject Writer Verification
dc.subject Grid Features
dc.subject Επαλήθευση συγγραφέα
dc.subject Χαρακτηριστικά πλέγματος
dc.title Automated off-line writer verification using short sentences and grid features en
heal.type conferenceItem
heal.generalDescription Proceedings of the 1st International Workshop on Automated Forensic Handwriting Analysis (AFHA) 2011 en
heal.classification Electrical engineering
heal.classification Electronics
heal.classification Ηλεκτρολογική μηχανική
heal.classification Ηλεκτρονική
heal.classificationURI http://skos.um.es/unescothes/C01311
heal.classificationURI http://zbw.eu/stw/descriptor/10455-2
heal.classificationURI **N/A**-Ηλεκτρολογική μηχανική
heal.classificationURI **N/A**-Ηλεκτρονική
heal.dateAvailable 10000-01-01
heal.language en
heal.access forever
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. el
heal.publicationDate 2011
heal.bibliographicCitation Tselios, K., Zois, E., Nassiopoulos, A. and karabetsos, S. (2011). Automated off-line writer verification using short sentences and grid features. In the 1st International Workshop on Automated Forensic Handwriting Analysis. en
heal.abstract This work presents a feature extraction method for writer verification based on their handwriting. Motivation for this work comes from the need of enchancing modern eras security applications, mainly focused towards real or near to real time processing, by implementing methods similar to those used in signature verification. In this context, we have employed a full sentence written in two languages with stable and predefined content. The novelty of this paper focuses to the feature extraction algorithm which models the connected pixel distribution along predetermined curvature and line paths of a handwritten image. The efficiency of the proposed method is evaluated with a combination of a first stage similarity score and a continuous SVM output distribution. The experimental benchmarking of the new method along with others, state of the art techniques found in the literature, relies on the ROC curves and the Equal Error Rate estimation. The produced results support a first hand proof of concept that our proposed feature extraction method has a powerful discriminative nature. en
heal.publisher [χ.ό.] el
heal.fullTextAvailability true
heal.conferenceName International Workshop on Automated Forensic Handwriting Analysis en
heal.conferenceItemType full paper


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες