dc.contributor.author | Τσέλιος, Κωνσταντίνος | el |
dc.contributor.author | Οικονόμου, Γεώργιος | el |
dc.contributor.author | Ζώης, Ηλίας Ν. | el |
dc.contributor.author | Νασιόπουλος, Αθανάσιος Α. | el |
dc.date.accessioned | 2015-01-12T16:55:11Z | |
dc.date.issued | 2015-01-12 | |
dc.identifier.uri | http://hdl.handle.net/11400/3855 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | Signature verification | |
dc.subject | Grid feature | |
dc.subject | Επαλήθευση υπογραφής | |
dc.subject | Χαρακτηριστικά πλέγματος | |
dc.title | Fusion of directional transitional features for off-line signature verification | en |
heal.type | conferenceItem | |
heal.classification | Electrical engineering | |
heal.classification | Electronics | |
heal.classification | Ηλεκτρολογική μηχανική | |
heal.classification | Ηλεκτρονική | |
heal.classificationURI | http://skos.um.es/unescothes/C01311 | |
heal.classificationURI | http://zbw.eu/stw/descriptor/10455-2 | |
heal.classificationURI | **N/A**-Ηλεκτρολογική μηχανική | |
heal.classificationURI | **N/A**-Ηλεκτρονική | |
heal.identifier.secondary | DOI: 10.1109/IJCB.2011.6117515 | |
heal.dateAvailable | 10000-01-01 | |
heal.language | en | |
heal.access | forever | |
heal.recordProvider | Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. | el |
heal.publicationDate | 2011 | |
heal.bibliographicCitation | Tselios, K., Economou, G., Zois, E. and Nassiopoulos, A. (2011). Fusion of directional transitional features for off-line signature verification. In the International Joint Conference on Biometrics Compendium. Washington, 11th-13th October 2011. Pp. 1-6. IEEE. | en |
heal.abstract | In this work, a feature extraction method for off-line signature recognition and verification is proposed, described and validated. This approach is based on the exploitation of the relative pixel distribution over predetermined two and three-step paths along the signature trace. The proposed procedure can be regarded as a model for estimating the transitional probabilities of the signature stroke, arcs and angles. Partitioning the signature image with respect to its center of gravity is applied to the two-step part of the feature extraction algorithm, while an enhanced three-step algorithm utilizes the entire signature image. Fusion at feature level generates a multidimensional vector which encodes the spatial details of each writer. The classifier model is composed of the combination of a first stage similarity score along with a continuous SVM output. Results based on the estimation of the EER on domestic signature datasets and well known international corpuses demonstrate the high efficiency of the proposed methodology. | en |
heal.publisher | IEEE | en |
heal.fullTextAvailability | true | |
heal.conferenceName | International Joint Conference on Biometrics Compendium | en |
heal.conferenceItemType | full paper |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: