Εμφάνιση απλής εγγραφής

dc.contributor.author Ματσόπουλος, Γεώργιος Κ. el
dc.contributor.author Δελήμπασης, Κωνσταντίνος Κ. el
dc.contributor.author Μουραβλιάνσκυ, Νικόλαος Α. el
dc.contributor.author Ασβεστάς, Παντελής Α. el
dc.contributor.author Νικήτα, Κωνσταντίνα Σ. el
dc.date.accessioned 2015-01-13T15:42:07Z
dc.date.issued 2015-01-13
dc.identifier.uri http://hdl.handle.net/11400/3939
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.subject Medical image registration
dc.subject Clinical environment
dc.subject Ιατρική εικόνα
dc.subject Κλινικό περιβάλλον
dc.title CT-MRI automatic surface-based registration schemes combining global and local optimization techniques en
heal.type journalArticle
heal.classification Medicine
heal.classification Medical technology
heal.classification Ιατρική
heal.classification Ιατρικά όργανα και εξοπλισμός
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://skos.um.es/unescothes/C02465
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Ιατρικά όργανα και εξοπλισμός
heal.contributorName Κουλουλιάς, Βασίλειος Ε. el
heal.contributorName Ουζούνογλου, Νικόλαος Κ. el
heal.dateAvailable 10000-01-01
heal.language en
heal.access forever
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2003
heal.bibliographicCitation Matsopoulos, K., Delibasis, K., Mouravliansky, N., Asvestas, P., Nikita, K., et al. (2003). CT-MRI automatic surface-based registration schemes combining global and local optimization techniques. Technology and Health Care. 11(4). pp. 219-232. IOS Press. en
heal.abstract Medical image registration is commonly required in order to combine the complementary information provided by different medical imaging modalities. In this paper, a new automatic registration scheme is proposed to register 3-D CT-MR head images and is currently tested on a clinical environment. The proposed scheme, after the preprocessing and the outer surface extraction of the data, is based on the use the rigid transformation method, in conjunction with a combination of global and local optimization techniques. Analytically, the paper exploits the optimization efficiency of three widely used optimization techniques, in obtaining the parameters of the rigid transformation model: the Downhill Simplex Method, the Genetic Algorithms and the Simulated Annealing. These optimization techniques are further combined by the sequential application of the Powell optimization method in order to refine the registration and increase its accuracy. A comparative study involving these optimization techniques in conjunction with the rigid transformation, and two other methods, the ICP and the manual methods, is also presented, for a sufficient number of clinical CT-MR brain images. Finally, quantitative and qualitative results are also presented to validate the performance of these automatic surface-based registration schemes, in terms of consistency and accuracy. Throughout of this study, the automatic registration scheme comprising of the rigid transformation in conjunction with the Simulated Annealing method sequentially combined with the Powell method has been performed superior regarding all the other compared registration schemes. en
heal.publisher IOS Press en
heal.journalName Technology and Health Care en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: CT-MRI automatic surface-based ...
    Μέγεθος: 177.0Kb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες