dc.contributor.author | Βεντούρας, Ερρίκος Μ. | el |
dc.contributor.author | Ουζούνογλου, Νικόλαος Κ. | el |
dc.contributor.author | Παπαγεωργίου, Χαράλαμπος | el |
dc.contributor.author | Ραμπαβίλας, Ανδρέας Ν. | el |
dc.contributor.author | Κεχριμπάρης, Κωνσταντίνος Ν. | el |
dc.date.accessioned | 2015-01-25T20:01:40Z | |
dc.date.available | 2015-01-25T20:01:40Z | |
dc.date.issued | 2015-01-25 | |
dc.identifier.uri | http://hdl.handle.net/11400/4723 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | Algebra | |
dc.subject | Electroencephalography | |
dc.subject | Άλγεβρα | |
dc.subject | Ηλεκτροεγκεφαλογραφία | |
dc.title | Brain electrical tomography using algebraic reconstruction techniques and Tikhonov regularization | en |
heal.type | conferenceItem | |
heal.generalDescription | Proceeedings of the 22th Ann.Int.Conf. of the IEEE-EMBS, vol.4 | en |
heal.classification | Medicine | |
heal.classification | Medical technology | |
heal.classification | Ιατρική | |
heal.classification | Ιατρική τεχνολογία | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh00006614 | |
heal.classificationURI | http://skos.um.es/unescothes/C02465 | |
heal.classificationURI | **N/A**-Ιατρική | |
heal.classificationURI | **N/A**-Ιατρική τεχνολογία | |
heal.keywordURI | http://id.loc.gov/authorities/subjects/sh85003425 | |
heal.keywordURI | http://id.loc.gov/authorities/subjects/sh85042138 | |
heal.contributorName | Στεφανής, Κωνσταντίνος Ν. | en |
heal.identifier.secondary | DOI: 10.1109/IEMBS.2000.901428 | |
heal.identifier.secondary | ISBN: 0-7803-6465-1 | |
heal.language | en | |
heal.access | campus | |
heal.recordProvider | Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. | el |
heal.publicationDate | 2000 | |
heal.bibliographicCitation | Ventrouras, E., Uzunoglu, N., Papageorgiou, C., Rabavilas, A., Kechribaris, C., et al. (2000). Brain electrical tomography using algebraic reconstruction techniques and Tikhonov regularization. In the Annual International Conference of the Engineering in Medicine and Biology Society. vol. 4. pp. 2744 - 2747. Chicago, 23th July - 28 July 2000. | en |
heal.abstract | The inverse EEG problem is solved using simulated potentials, through an analytic technique providing information about extended intracranial distributions, with separate source and sink positions. A three-layered concentric sphere model is used for representing head geometry. Comparative performance evaluation of the Algebraic Reconstruction Techniques (ART) and the Tikhonov Regularization Technique (TRT) is performed. ART algorithms specifically designed to compensate for noisy data perform similarly with TRT, but require the prior knowledge of the characteristic of the noise affecting the data. The empirical composite residual and smoothing operator (CRESO) criterion provides an approximation to the optimal regularization parameter t of the TRT, without requiring any prior knowledge about the noise in measured potentials. Therefore, when the CRESO criterion is successful in providing a t value. TRT may be used in real EEG data inversions for the creation of brain electrical activity tomographic images | en |
heal.publisher | IEEE | en |
heal.fullTextAvailability | true | |
heal.conferenceName | Engineering in Medicine and Biology Society | en |
heal.conferenceItemType | full paper |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: