dc.contributor.author | Βάσιος, Χρήστος | el |
dc.contributor.author | Ματσόπουλος, Γεώργιος Κ. | el |
dc.contributor.author | Βεντούρας, Ερρίκος Μ. | el |
dc.contributor.author | Παπαγεωργίου, Χαράλαμπος | el |
dc.contributor.author | Κονταξάκης, Βασίλειος Π. | el |
dc.date.accessioned | 2015-01-25T22:00:04Z | |
dc.date.issued | 2015-01-26 | |
dc.identifier.uri | http://hdl.handle.net/11400/4730 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | Electroencephalography | |
dc.subject | Bioelectric potentials | |
dc.subject | Ηλεκτροεγκεφαλογραφία | |
dc.subject | Βιοηλεκτρικό δυναμικό | |
dc.title | Cross-validated classification of intracranial sources extracted by BET-ART method | en |
heal.type | conferenceItem | |
heal.generalDescription | Proceedings of the 2nd International IEEE-EMBS Conference on Neural Engineering | en |
heal.classification | Medicine | |
heal.classification | Medical technology | |
heal.classification | Ιατρική | |
heal.classification | Ιατρική τεχνολογία | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh00006614 | |
heal.classificationURI | http://skos.um.es/unescothes/C02465 | |
heal.classificationURI | **N/A**-Ιατρική | |
heal.classificationURI | **N/A**-Ιατρική τεχνολογία | |
heal.keywordURI | http://id.loc.gov/authorities/subjects/sh85042138 | |
heal.contributorName | Νικήτα, Κωνσταντίνα Σ. | el |
heal.contributorName | Ουζούνογλου, Νικόλαος Κ. | el |
heal.identifier.secondary | DOI: 10.1109/CNE.2005.1419573 | |
heal.dateAvailable | 10000-01-01 | |
heal.language | en | |
heal.access | forever | |
heal.recordProvider | Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. | el |
heal.publicationDate | 2005 | |
heal.bibliographicCitation | Vasios , C., Matsopoulos, G., Ventouras, E., Papageorgiou, C., Kontaxakis, V., et al. (2005). Cross-validated classification of intracranial sources extracted by BET-ART method. In the 2nd International IEEE-EMBS Conference on Neural Engineering. pp. 140-143. IEEE Engineering in Medicine and Biology Society: Arlington, 16th-19th March 2005. | en |
heal.abstract | In the present paper, a new methodological approach, for the classification of first episode schizophrenic patients (FES) against normal controls, is proposed. The first step of the methodology applied is the feature extraction, which is based on the combination of the multivariate autoregressive model with the simulated annealing technique, in order to extract optimum features, in terms of classification rate. The classification, as the second step of the methodology, is implemented by means of an artificial neural network (ANN) trained with the back-propagation algorithm under "leave-one-out cross-validation". The ANN is a multi-layer perceptron, the architecture of which, is selected after a detailed search. The proposed methodology has been applied for the classification of FES patients and normal controls using as input signals the Intracranial current sources obtained by the inversion of ERPs using an algebraic reconstruction technique. Results by implementing the proposed methodology provide classification rates of up to 93.1% | en |
heal.publisher | IEEE | en |
heal.fullTextAvailability | true | |
heal.conferenceName | International IEEE-EMBS Conference on Neural Engineering | en |
heal.conferenceItemType | full paper |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: