Εμφάνιση απλής εγγραφής

dc.contributor.author Καλατζής, Ιωάννης el
dc.contributor.author Πήλιουρας, Νικόλαος el
dc.contributor.author Βεντούρας, Ερρίκος Μ. el
dc.contributor.author Παπαγεωργίου, Χαράλαμπος el
dc.contributor.author Ραμπαβίλας, Ανδρέας Ν. el
dc.date.accessioned 2015-01-26T10:49:48Z
dc.date.issued 2015-01-26
dc.identifier.uri http://hdl.handle.net/11400/4755
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.subject Electroencephalography
dc.subject Medical signal processing
dc.subject Ηλεκτροεγκεφαλογραφία
dc.subject Ιατρική επεξεργασία σήματος
dc.title Comparative evaluation of probabilistic neural network versus support vector machines classifiers in discriminating ERP signals of depressive patients from healthy controls en
heal.type conferenceItem
heal.generalDescription Proceedings of the 3rd International Symposium on Image and Signal Processing and Analysis (Vol.2 ) en
heal.classification Medicine
heal.classification Biomedical engineering
heal.classification Ιατρική
heal.classification Βιοϊατρική τεχνολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85014237
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Βιοϊατρική τεχνολογία
heal.keywordURI http://id.loc.gov/authorities/subjects/sh85042138
heal.contributorName Κανδαράκης, Διονύσης Α. el
heal.contributorName Loncaric, S. (ed.) en
heal.contributorName Neri, A. (ed.) en
heal.contributorName Babic, H. (ed.) en
heal.identifier.secondary ISBN: 953-184-062-8
heal.dateAvailable 10000-01-01
heal.language en
heal.access forever
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2003
heal.bibliographicCitation Kalatzis, I., Piliouras, N., Ventouras, E., Papageorgiou, C., Rabavilas, A., et al. (2003). Comparative evaluation of probabilistic neural network versus support vector machines classifiers in discriminating ERP signals of depressive patients from healthy controls. In the 3rd International Symposium on Image and Signal Processing and Analysis. pp. 981-985. IEEE Signal Processing Society: Rome, 18th-20th September 2003. en
heal.abstract This paper describes the design of classification system capable of distinguishing patients with depression from normal controls by event-related potential (ERP) signals using the P600 component. Clinical material comprised twenty-five patients with depression and an equal number of gender and aged-matched healthy controls. All subjects were evaluated by a computerized version of the digit span Wechsler test. EEC activity was recorded from 15 scalp electrodes and recordings were digitized for further computer processing. Features related to the shape of the waveform were generated using a dedicated custom software interface system developed in C++ for the purposes of this work. A software classification system was designed, consisting of (a) two classifiers, the probabilistic neural network (PNN) and the support vector machines (SVM), (b) two routines for feature reduction and feature selection, and (c) an overall system evaluation routine, comprising the exhaustive search and the leave-one-out methods. Highest classification accuracies achieved were 92% for the PNN and 96% for the SVM, using the 'latency/amplitude ratio' and 'peak-to-peak slope' two-feature combination. In conclusion, employing computer-based pattern recognition techniques with features not easily evaluated by the clinician, patients with depression could be distinguished from healthy subjects with high accuracy. en
heal.publisher IEEE el
heal.fullTextAvailability true
heal.conferenceName International Symposium on Image and Signal Processing and Analysis en
heal.conferenceItemType full paper


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: 55 - 2003 - ProcIEEE-ISISPA ...
    Μέγεθος: 286.0Kb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες