Εμφάνιση απλής εγγραφής

dc.contributor.author Καλατζής, Ιωάννης el
dc.contributor.author Πήλιουρας, Νικόλαος el
dc.contributor.author Βεντούρας, Ερρίκος Μ. el
dc.contributor.author Παπαγεωργίου, Χαράλαμπος el
dc.contributor.author Ραμπαβίλας, Ανδρέας Ν. el
dc.date.accessioned 2015-01-26T11:05:26Z
dc.date.issued 2015-01-26
dc.identifier.uri http://hdl.handle.net/11400/4759
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.subject Neuropsychological tests
dc.subject Pattern recognition
dc.subject Νευροψυχολογία
dc.subject Αναγνώριση προτύπων
dc.title A probabilistic neural network (PNN) classifier for discriminating obsessive-compulsive disorder (OCD) patients from healthy controls using the P600 component of ERP signals en
heal.type conferenceItem
heal.generalDescription Proceedings of the 4th European Symposium on Biomedical Engineering en
heal.classification Medicine
heal.classification Medical technology
heal.classification Ιατρική
heal.classification Ιατρικά όργανα και εξοπλισμός
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://skos.um.es/unescothes/C02465
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Ιατρικά όργανα και εξοπλισμός
heal.keywordURI http://id.loc.gov/authorities/subjects/sh85091162
heal.keywordURI http://skos.um.es/unescothes/C02924
heal.contributorName Κάβουρας, Διονύσης Α. el
heal.dateAvailable 10000-01-01
heal.language en
heal.access forever
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2004
heal.bibliographicCitation Kalatzis, I., Piliouras, N., Ventouras, E., Papageorgiou, C., Rabavilas, A., et al. (2004). A probabilistic neural network (PNN) classifier for discriminating obsessive-compulsive disorder (OCD) patients from healthy controls using the P600 component of ERP signals. In the 4th European Symposium on Biomedical Engineering. University of Patras: Patras, 2004 en
heal.abstract Neuropsychological research yields diverging results regarding Working Memory (WM) in Obsessive-Compulsive Disorder (OCD). In the present study an attempt was made to focus in the differences between OCD patients and healthy controls, as reflected by the P600 component of ERP signals, as well to search deeper into the P600 signals by extracting new features and, by employing powerful classification procedures, to develop a pattern recognition system for discriminating OCD patients from controls. Eighteen patients with OCD symptomatology and twenty age and sex matched normal controls were examined. All subjects were evaluated by a computerized version of the digit span subtest of the Wechsler Adult Intelligence Scale. EEG activity was recorded from 15 scalp electrodes (leads). From the P600 component of each signal nineteen waveform-features were calculated. The Probabilistic Neural Network (PNN) classifier was developed and it was fed with features from all leads. Highest single-lead precision (86.8%) was found at the Fp2 and C6 leads. When leads were grouped into anatomical regions, highest accuracies were achieved at the temporo-central (86.8%) region (C5,C6). These findings may be indicative that OCD patients present deficits related to WM mechanisms, corresponding to prefrontal, central, and temporocentral regions, as reflected by the P600 component. en
heal.publisher IEEE en
heal.fullTextAvailability true
heal.conferenceName 4th European Symposium on Biomedical Engineering en
heal.conferenceItemType full paper


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: 58 - 2004 - Proc4thESBE - ...
    Μέγεθος: 234.9Kb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες