Εμφάνιση απλής εγγραφής

dc.contributor.author Μοάτσος, Μ. el
dc.contributor.author Βεντούρας, Ερρίκος Μ. el
dc.contributor.author Παπαγεωργίου, Χαράλαμπος el
dc.contributor.author Λιάππας, Ιωάννης Α. el
dc.contributor.author Νικολάου, Χρυσούλα el
dc.date.accessioned 2015-01-26T11:39:31Z
dc.date.issued 2015-01-26
dc.identifier.uri http://hdl.handle.net/11400/4764
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.subject Electroencephalography
dc.subject Independent component analysis
dc.subject Ηλεκτροεγκεφαλογράφημα
dc.subject Ανάλυση ανεξάρτητων συνιστωσών
dc.title Event-related potentials processing using independent component analysis technique en
heal.type conferenceItem
heal.secondaryTitle application to 6 month abstinent addicts en
heal.generalDescription Proceedings of the 4th European Symposium on Biomedical Engineering en
heal.classification Medicine
heal.classification Computer engineering
heal.classification Ιατρική
heal.classification Μηχανική υπολογιστών
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85029495
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Ηλεκτρολογική μηχανική
heal.keywordURI http://lod.nal.usda.gov/19230
heal.keywordURI http://id.loc.gov/authorities/subjects/sh2011000546
heal.contributorName Ραμπαβίλας, Ανδρέας Ν. el
heal.contributorName Ουζούνογλου, Νικόλαος Κ. el
heal.dateAvailable 10000-01-01
heal.language en
heal.access forever
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2004
heal.bibliographicCitation Moatsos, M., Ventouras, E., Papageorgiou, C., Liappas, I.A., Nikolaou, C., et al. (2004). Event-related potentials processing using independent component analysis technique: application to 6 month abstinent addicts. In the 4th European Symposium on Biomedical Engineering. University of Patras: Patras, 2004. en
heal.abstract Electroencephalographic Event-Related Potentials (ERPs) present special interest for investigating cognitive processes. ERP curves contain peaks called components, such as the P600 component. P600 may be present in the averaged ERP waveform as a not-easily discernible secondary peak. In order to extract the P600 component, Independent Component Analysis (ICA) is used. ICA is a method used for solving the Blind Source Separation (BSS) problem, based on the assumption that the sources are statisti cally independent. The focus of the present study was to select a subset of independent components (ICs) for the reconstruction of the averaged ERPs in the original electrode recording positions and in the time frame of the P600 component. Two empirical criteria are used for the selection of the IC’s; the first criterion is based on the temporal proximity of the original P600 and the IC projection that reconstructs the P600 component and the second criterion is maximizing the reconstructed P600 amplitude based on the selection of a combination of IC projections using up to a preselected maximum number of them. The techniques are tested on ERPs recorded from healthy subjects and heroin addicts. en
heal.fullTextAvailability true
heal.conferenceName European Symposium on Biomedical Engineering en
heal.conferenceItemType full paper


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: 59 - 2004 - Proc4thESBE - ...
    Μέγεθος: 46.49Kb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες