Εμφάνιση απλής εγγραφής

dc.contributor.author Καλατζής, Ιωάννης el
dc.contributor.author Πήλιουρας, Νικόλαος el
dc.contributor.author Βεντούρας, Ερρίκος Μ. el
dc.contributor.author Κανδαράκης, Ιωάννης Σ. el
dc.contributor.author Παπαγεωργίου, Χαράλαμπος el
dc.date.accessioned 2015-01-28T12:20:16Z
dc.date.available 2015-01-28T12:20:16Z
dc.date.issued 2015-01-28
dc.identifier.uri http://hdl.handle.net/11400/4929
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.subject Classification--Archives
dc.subject Neural computers
dc.subject Σύστημα ταξινόμησης
dc.subject Νευρωνικό δίκτυο
dc.title Probabilistic neural network versus cubic least-squares minimum-distance in classifying eeg signals en
heal.type conferenceItem
heal.generalDescription Proceedings of the International Conference of Computational Methods in Sciences and Enginnering 2003 en
heal.classification Medicine
heal.classification Medical technology
heal.classification Ιατρική
heal.classification Ιατρικά όργανα και εξοπλισμός
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://skos.um.es/unescothes/C02465
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Ιατρικά όργανα και εξοπλισμός
heal.keywordURI http://id.loc.gov/authorities/subjects/sh85026720
heal.keywordURI http://id.loc.gov/authorities/subjects/sh87008041
heal.contributorName Ραμπαβίλας, Ανδρέας Ν. el
heal.contributorName Κάβουρας, Διονύσης Α. el
heal.contributorName Σίμος, Θεόδωρος (επιμ.) el
heal.identifier.secondary ISBN: 981-238-595-9
heal.language en
heal.access campus
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2003
heal.bibliographicCitation Kalatzis, I., Piliouras, N., Ventouras, E., kandarakis, I., Papageorgiou, C., et al. (2003). Probabilistic neural network versus cubic least-squares minimum-distance in classifying eeg signals. In the International Conference of Computational Methods in Sciences and Enginnering. pp. 268-271. Kastoria, Greece, 2003. en
heal.abstract The purpose of the present study is the implementation of a classification system for differentiating healthy subjects from patients with depression. Twenty-five depressive patients and an equal number of gender and aged-matched normal controls were evaluated using a computerized version of the digit span Wechsler test. Morphological waveform features were extracted from the digitized Event-Related Potential (ERP) signals, recorded from 15 scalp electrodes. The feature extraction process focused on the P600 component of the ERPs. The designed system comprised two classifiers, the probabilistic neural network (PNN) and the cubic least-squares (CLS) minimum-distance, two routines for feature reduction and feature selection, and an overall system evaluation routine, consisting of the exhaustive search and the leave-one-out methods. Highest classification accuracies achieved were 96% for the PNN and 94% for the CLS, using the ‘latency/amplitude ratio’ and ‘peak-to-peak slope’ two-feature combination. In conclusion, employing computer-based pattern recognition techniques with features not easily evaluated by the clinician, patients with depression could be distinguished from healthy subjects with high accuracy. en
heal.publisher [χ.ό.] en
heal.fullTextAvailability true
heal.conferenceName International Conference of Computational Methods in Sciences and Enginnering en
heal.conferenceItemType full paper


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: 52 - 2003 - ICCMSE 2003 - ...
    Μέγεθος: 70Kb
    Μορφότυπο: Microsoft Word

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες