Εμφάνιση απλής εγγραφής

dc.contributor.author Καλατζής, Ιωάννης el
dc.contributor.author Πήλιουρας, Νικόλαος el
dc.contributor.author Παππάς, Δ. el
dc.contributor.author Βεντούρας, Ερρίκος Μ. el
dc.contributor.author Κάβουρας, Διονύσης Α. el
dc.date.accessioned 2015-01-28T12:51:49Z
dc.date.available 2015-01-28T12:51:49Z
dc.date.issued 2015-01-28
dc.identifier.uri http://hdl.handle.net/11400/4931
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.subject Neural computers
dc.subject Single-photon emission computed tomography
dc.subject Νευρωνικό δίκτυο
dc.subject Εκπομπή φωτονίου σε υπολογιστική τομογραφία
dc.title Probabilistic neural network classifier versus multilayer perceptron classifier in discriminating brain spect images of patients with diabetes from normal controls en
heal.type conferenceItem
heal.generalDescription Proceedings of the International Conference of Computational Methods in Sciences and Enginnering 2003 en
heal.classification Medicine
heal.classification Medical technology
heal.classification Ιατρική
heal.classification Ιατρικά όργανα και εξοπλισμός
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://skos.um.es/unescothes/C02465
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Ιατρικά όργανα και εξοπλισμός
heal.keywordURI http://id.loc.gov/authorities/subjects/sh87008041
heal.keywordURI http://id.loc.gov/authorities/subjects/sh2006001159
heal.contributorName Σίμος, Θεόδωρος (επιμ.) el
heal.identifier.secondary ISBN: 981-238-595-9
heal.language en
heal.access campus
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2003
heal.bibliographicCitation Kalatzis, I., Piliouras, N., Pappas, D., Ventouras, E., Cavouas, D., et al. (2003). Probabilistic neural network classifier versus multilayer perceptron classifier in discriminating brain spect images of patients with diabetes from normal controls. In the International Conference of Computational Methods in Sciences and Enginnering. pp. 272-276. Kastoria, Greece, 2003. en
heal.abstract The aim of this study was to compare the performance of the probabilistic neural network (PNN) classifier with the multilayer perceptron (MLP) classifier, in an attempt to discriminate between patients with diabetes mellitus type II (DMII) and normal subjects using medical images from brain single photon emission computed tomography (SPECT). Features from the gray-level histogram and the spatial-dependence matrix were generated from image-samples collected from brain SPECT images of diabetic patients and healthy volunteers, and they were used as input to the PNN and the MLP classifiers. Highest accuracies were 99.5% for the MLP and 99% for the PNN and they were achieved in the left inferior parietal lobule, employing the mean value and correlation features. Our findings show that the MLP classifier outperformed slightly the PNN classifier in almost all cerebral regions, but the lower computational time of the PNN makes him a very useful classification tool. The high precision of both classifiers indicate significant differences in radio-pharmaceutical (99mTc-ECD) uptake of diabetic patients compared to the normal controls, which may be due to cerebral blood flow disruption in patients with DMII. en
heal.publisher [χ.ό.] el
heal.fullTextAvailability true
heal.conferenceName International Conference of Computational Methods in Sciences and Enginnering en
heal.conferenceItemType full paper


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: 53 - 2003 - ICCMSE 2003 - ...
    Μέγεθος: 62Kb
    Μορφότυπο: Microsoft Word

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες