Εμφάνιση απλής εγγραφής

dc.contributor.author Βάσιος, Χρήστος el
dc.contributor.author Ματσόπουλος, Γεώργιος Κ. el
dc.contributor.author Βεντούρας, Ερρίκος Μ. el
dc.contributor.author Παπαγεωργίου, Χαράλαμπος el
dc.contributor.author Νικήτα, Κωνσταντίνα Σ. el
dc.date.accessioned 2015-01-28T13:57:52Z
dc.date.issued 2015-01-28
dc.identifier.uri http://hdl.handle.net/11400/4936
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.subject Brain phenomena
dc.subject Cathode ray oscillographs
dc.subject Φαινόμενα του εγκεφάλου
dc.subject Κυματομορφές
dc.title Multivariate autoregressive modelling combined with simulated annealing optimisation technique for feature extraction and classification of intracranial current activity en
heal.type conferenceItem
heal.generalDescription Proceedings of the 5th International Conference on Neural Networks and Expert Systems in Medicine and HealthCare and 1st International Conference on Computational Intelligence in Medicine and Healthcare en
heal.classification Medicine
heal.classification Medical technology
heal.classification Ιατρική
heal.classification Ιατρικά όργανα και εξοπλισμός
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://skos.um.es/unescothes/C02465
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Ιατρικά όργανα και εξοπλισμός
heal.keywordURI http://id.loc.gov/authorities/subjects/sh85021030
heal.contributorName Κονταξάκης, Βασίλειος Π. el
heal.contributorName Χριστοδούλου, Γιώργος Ν. el
heal.contributorName Ουζούνογλου, Νικόλαος Κ. el
heal.dateAvailable 10000-01-01
heal.language en
heal.access forever
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2003
heal.bibliographicCitation Vasios, C., Matsopoulos, G., Ventouras, E., Papageorgiou, C., Nikita, K., et al. (2003). Multivariate autoregressive modelling combined with simulated annealing optimisation technique for feature extraction and classification of intracranial current activity. In the 5th International Conference on Neural Networks and Expert Systems in Medicine and HealthCare and 1st International Conference on Computational Intelligence in Medicine and Healthcare. pp. 73-78. Sheffield, 2003. en
heal.abstract The inversion of late Event-Related Potentials to intracranial current source activities provides a method to observe brain phenomena related to information processing mechanisms. The use of current source waveforms, as inputs in classification systems, may provide robust performance for Decision Support Systems in Psychiatry. In the present work a new method for the classification of intracranial current sources is proposed, combining the Multivariate Autoregressive model with the Simulated Annealing technique, in order to extract optimum features, in terms of the classification rate. The classification is implemented with a three-layer NN trained with the back-propagation algorithm. The system was applied in the classification of normal controls and schizophrenic patients, providing classification rates of up to 90%. Furthermore, the clustering of intracranial source locations providing best classification performance may indicate relationships between the brain areas corresponding to these locations and pathological mechanisms. en
heal.publisher [χ.ό.] el
heal.fullTextAvailability true
heal.conferenceName 5th International Conference on Neural Networks and Expert Systems in Medicine and HealthCare and 1st International Conference on Computational Intelligence in Medicine and Healthcare en
heal.conferenceItemType full paper


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: 56 - 2003 - NNESMED 2003 - ...
    Μέγεθος: 911.5Kb
    Μορφότυπο: Microsoft Word

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες