Εμφάνιση απλής εγγραφής

dc.contributor.author Καλατζής, Ιωάννης el
dc.contributor.author Πήλιουρας, Νικόλαος el
dc.contributor.author Γκλώτσος, Δημήτριος el
dc.contributor.author Βεντούρας, Ερρίκος Μ. el
dc.contributor.author Παπαγεωργίου, Χαράλαμπος el
dc.date.accessioned 2015-01-29T11:22:00Z
dc.date.issued 2015-01-29
dc.identifier.uri http://hdl.handle.net/11400/5048
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.subject Pattern recognition
dc.subject Support vector machines
dc.subject Αναγνώριση προτύπων
dc.subject Μηχανές διανυσμάτων υποστήριξης
dc.title Signal analysis methods to discriminate between obsessive-compulsive disorder (OCD) patients and healthy controls en
heal.type conferenceItem
heal.generalDescription Proceedings of the 1st International Conference on Experiments/Process/System Modelling/Simulation/Optimization (1st IC-EpsMso) (CD-ROM) en
heal.classification Medicine
heal.classification Medical technology
heal.classification Ιατρική
heal.classification Ιατρικά όργανα και εξοπλισμός
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://skos.um.es/unescothes/C02465
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Ιατρικά όργανα και εξοπλισμός
heal.keywordURI http://skos.um.es/unescothes/C02924
heal.keywordURI http://id.loc.gov/authorities/subjects/sh2008009003
heal.contributorName Ραμπαβίλας, Ανδρέας Ν. el
heal.contributorName Σολδάτος, Κωνσταντίνος Ρ. el
heal.contributorName Κάβουρας, Διονύσης Α. el
heal.dateAvailable 10000-01-01
heal.language en
heal.access forever
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2005
heal.bibliographicCitation Kalatzis, I., Piliouras, N., Glotsos, D., Ventouras, E., Papageorgiou, C., et al. (2005). Signal analysis methods to discriminate between obsessive-compulsive disorder (OCD) patients and healthy controls. In the 1st International Conference on Experiments/Process/System Modelling/Simulation/Optimization. University of Patras: Athens, 6th-9th July 2005. en
heal.abstract A series of Event-Related Potential (ERP) signals were analyzed with pattern recognition methods using new morphological features and powerful classifiers, in an attempt to develop a computer-aided discrimination system of OCD patients from controls. Eighteen OCD patients and twenty controls were examined. All subjects were evaluated by a computerized version of the digit span subtest of the Wechsler Adult Intelligence Scale. EEGs were recorded from 15 scalp leads. From the P600 component of each signal nineteen waveform-features were calculated. The 3rd-degree Least Squares - Minimum Distance classifier (LSMD3C) and the Support Vector Machines classifier (SVMC) were developed. The LSMD3C was fed with features from all leads and the best feature combinations were inputted into the SVMC to improve the classification results. Highest overall accuracy (89.5%) was found at the C6 lead indicating that OCD patients may present deficits related to working memory mechanisms corresponding to the right temporocentral region. en
heal.publisher University of Patras en
heal.fullTextAvailability true
heal.conferenceName International Conference on Experiments/Process/System Modelling/Simulation/Optimization en
heal.conferenceItemType full paper


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: 67 - 2005 - 1st IC-EpsMso - ...
    Μέγεθος: 195.3Kb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες