Εμφάνιση απλής εγγραφής

dc.contributor.author Καλατζής, Ιωάννης el
dc.contributor.author Πήλιουρας, Νικόλαος el
dc.contributor.author Κάβουρας, Διονύσης Α. el
dc.contributor.author Κανδαράκης, Ιωάννης Σ. el
dc.contributor.author Βεντούρας, Ερρίκος Μ. el
dc.date.accessioned 2015-01-29T12:35:47Z
dc.date.issued 2015-01-29
dc.identifier.uri http://hdl.handle.net/11400/5059
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.subject Memory mechanisms
dc.subject Scalp measurements
dc.subject Μηχανισμοί μνήμης
dc.subject Μετρήσεις του τριχωτού της κεφαλής
dc.title Robustness of an event-related potentials classification systen based on the statistical parameters of morphological features en
heal.type conferenceItem
heal.generalDescription Proceedings of the 5th European Symposium on Biomedical Engineering (CD-ROM) en
heal.classification Medicine
heal.classification Medical technology
heal.classification Ιατρική
heal.classification Ιατρικά όργανα και εξοπλισμός
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://skos.um.es/unescothes/C02465
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Ιατρικά όργανα και εξοπλισμός
heal.dateAvailable 10000-01-01
heal.language en
heal.access forever
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2006
heal.bibliographicCitation Kalatzis, I., Piliouras, N., Cavouras, D., Kandarakis, I. and Ventouras, E. (2006). Robustness of an event-related potentials classification systen based on the statistical parameters of morphological features. In the 5th European Symposium on Biomedical Engineering. University of Patras: Patras, 2006. en
heal.abstract The P600 component is part of the late components of Event-related Potentials (ERPs), which have been related to working memory (WM) mechanisms. The relation of psychiatric illnesses to deficits in WM may manifest itself as a differentiation at the level of the ERP scalp measurements. In the present work, in order to test the robustness of a classification system under various levels of Gaussian noise, ERP activity at 15 leads was simulated creating two sets of templates representing the normal control and patient classes. From these templates a number of representatives of the two classes were produced. Independent Component Analysis (ICA) was applied as a pre-processing step. From the ICA-reconstructed ERPs, in the time window corresponding to the P600 component, five morphological features were extracted and they were used as input features to a Probabilistic Neural Network (PNN) classifier. Results indicate acceptable tolerance of noise, corresponding to overall classification performance levels higher than 80%, up to levels of 20% noise. In most of the best feature combinations and noise level tested, the standard deviation of the amplitude of the P600 component was present, indicating the possible significance of this feature for discrimination in the case of noise-corrupted data. en
heal.publisher [χ.ό.] el
heal.fullTextAvailability true
heal.conferenceName European Symposium on Biomedical Engineering en
heal.conferenceItemType full paper


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: 70 - 2006 - 5th ESBE - Kalatzis.pdf
    Μέγεθος: 124.1Kb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες