Εμφάνιση απλής εγγραφής

dc.contributor.author Κοψαυτής, Ν. el
dc.contributor.author Βεντούρας, Ερρίκος Μ. el
dc.contributor.author Κτώνας, Περικλής Υ. el
dc.contributor.author Παπαρρηγόπουλος, Θωμάς el
dc.contributor.author Δίκαιος, Δημήτρης Γ. el
dc.date.accessioned 2015-01-29T12:54:21Z
dc.date.issued 2015-01-29
dc.identifier.uri http://hdl.handle.net/11400/5061
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.subject Artificial neural network
dc.subject Sleep spindles
dc.subject Τεχνητό νευρωνικό δίκτυο
dc.subject Άτρακτοι ύπνου
dc.title Detection of EEG sleep spindles using artificial and probabilistic neural networks en
heal.type conferenceItem
heal.generalDescription Proceedings of the 5th European Symposium on Biomedical Engineering en
heal.classification Medicine
heal.classification Biomedical engineering
heal.classification Ιατρική
heal.classification Βιοϊατρική τεχνολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85014237
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Βιοϊατρική τεχνολογία
heal.contributorName Σολδάτος, Κωνσταντίνος Ρ. el
heal.contributorName Νικηφορίδης, Γεώργιος Π. el
heal.dateAvailable 10000-01-01
heal.language en
heal.access forever
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2006
heal.bibliographicCitation Kopsaftis, N., Ventouras, E., Ktonas, P., Paparrigopoulos, T., Dikeos, D., et al. (2006). Detection of EEG sleep spindles using artificial and probabilistic neural networks. In the 5th European Symposium on Biomedical Engineering. University of Patras: Patras, 2006. en
heal.abstract In the present work an Artificial Neural Network (ANN) and a Probabilistic Neural Network (PNN) were used in detecting EEG sleep spindles. The networks were trained separately using the same spindles. The networks were trained separately using the same spindles. False positives (FPs) were characterized in two categories: FP1 included FP indications by the system, when no spindles were visually detected and FP2 concerned the case when a visually detected spindle corresponded to two distinct spindle indications by the system. ANN had higher sensitivity than PNN, when the classifiers functioned separately (88.5% vs 75.8%). All spindles detected by PNN were also detected by ANN. If only FP1s were taken into account, then FP rate was 16.6% and 0% respectively. The combination of a two-stage detector, with the first level being the ANN and the second being the PNN resulted in a system retaining the sensitivity of the ANN, and the ability to characterize the spindles indicated by the system into two categories, those indicated by both networks, with a probability of 3.5% to be FPs, and the remaining ones, which need a second round of visual inspection, because they have a high probability (56.7%) to be FP indications. en
heal.publisher [χ.ό.] el
heal.fullTextAvailability true
heal.conferenceName European Symposium on Biomedical Engineering en
heal.conferenceItemType full paper


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: 71 - 2006 - 5th ESBE - Kopsaft ...
    Μέγεθος: 88.74Kb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες