Εμφάνιση απλής εγγραφής

dc.contributor.author Καλατζής, Ιωάννης el
dc.contributor.author Νίνος, Κωνσταντίνος Δ. el
dc.contributor.author Γεωργιάδης, Παντελής el
dc.contributor.author Βεντούρας, Ερρίκος Μ. el
dc.contributor.author Κάβουρας, Διονύσης Α. el
dc.date.accessioned 2015-01-29T13:15:07Z
dc.date.issued 2015-01-29
dc.identifier.uri http://hdl.handle.net/11400/5064
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.subject Pattern recognition
dc.subject Evoked potentials (Electrophysiology)
dc.subject Αναγνώριση προτύπων
dc.subject Δυνατότητες για τη συγκεκριμένη εκδήλωση
dc.title Evaluation of a signal analysis system under simulated noise conditions en
heal.type conferenceItem
heal.generalDescription Proceedings of the 2nd International Conference on Experiments/Process/System Modelling/Simulation & Optimization (2nd IC-EpsMsO), (CD-ROM) en
heal.classification Medicine
heal.classification Medical technology
heal.classification Ιατρική
heal.classification Ιατρικά όργανα και εξοπλισμός
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://skos.um.es/unescothes/C02465
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Ιατρικά όργανα και εξοπλισμός
heal.keywordURI http://skos.um.es/unescothes/C02924
heal.keywordURI http://id.loc.gov/authorities/subjects/sh85046028
heal.dateAvailable 10000-01-01
heal.language en
heal.access forever
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2007
heal.bibliographicCitation Kalatzis, I., Ninos, K., Georgiadis, P., Ventouras, E. and Cavouras, D. (2007). Evaluation of a signal analysis system under simulated noise conditions. In the 2nd International Conference on Experiments/Process/System Modelling/Simulation & Optimization. University of Patras: Athens, 2007. en
heal.abstract Purpose: To examine the robustness of a pattern recognition system under the influence of noise in Event Related Potentials (ERP) signals in discriminating controls from patients. Material and Methods: ERP recordings were simulated by generating two series of signals, based on real signal templates from normal controls and patients, with various levels of added-on Gaussian noise. From the resulting signals, a number of waveform characteristic quantities were calculated and they were used as input to an ensemble classification structure, which consisted of three different classifiers, namely the Bayesian classifier, the k-Nearest Neighbor (kNN) and the Probabilistic Neural Network (PNN), and following the majority vote rule. Results: The classification accuracies of individual classifiers were over 80% for the PNN and over 75% for the kNN and the Bayesian. The ensemble structure improved classification precision resulting in an overall accuracy of over 87% for all noise levels tested. Conclusion: Results provide an estimation of the robustness of the developed ensemble classification scheme, which may be of value to the clinician, given that ERP signals are usually corrupted by noise in clinical practice. en
heal.publisher [χ.ό.] el
heal.fullTextAvailability true
heal.conferenceName International Conference on Experiments/Process/System Modelling/Simulation & Optimization en
heal.conferenceItemType full paper


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: 73 - 2007 - ICEPSMSO - Kalatzis.pdf
    Μέγεθος: 52.06Kb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες