Εμφάνιση απλής εγγραφής

dc.contributor.author Παγώνης, Νικόλαος el
dc.contributor.author Κάβουρας, Διονύσης Α. el
dc.contributor.author Σιδηρόπουλος, Κωνσταντίνος el
dc.contributor.author Σακελλαρόπουλος, Γεώργιος Χ. el
dc.contributor.author Νικηφορίδης, Γεώργιος Χ. el
dc.date.accessioned 2015-01-30T17:37:48Z
dc.date.available 2015-01-30T17:37:48Z
dc.date.issued 2015-01-30
dc.identifier.uri http://hdl.handle.net/11400/5164
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://e-jst.teiath.gr/ en
dc.subject Breast Cancer
dc.subject Καρκίνος μαστού
dc.subject Image Analysis
dc.subject Pattern Recognition
dc.subject Multimodality
dc.subject US X-RAY
dc.subject Ανάλυση εικόνας
dc.subject Πολυτροπικότητα
dc.subject Πρότυπα αναγνώρισης
dc.title Improving the classification accuracy of computer aided diagnosis through multimodality breast imaging en
heal.type journalArticle
heal.generalDescription Special issue: Scientific papers presented on the 3nd International Conference on Experiments/Process/System Modeling/Simulation & Optimization in Athens, 8-11 July, 2009. Mini symposium on Medical Imaging, organized by G. Panayiotakis, I. Kandarakis, G. Fountos and I. Valais en
heal.classification Medicine
heal.classification Medical physics
heal.classification Ιατρική
heal.classification Ιατρική φυσική
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85083001
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Ιατρική φυσική
heal.language en
heal.access free
heal.recordProvider Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Tμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας el
heal.publicationDate 2010
heal.bibliographicCitation Pagonis, N., Cavouras, D.A., Sidiropoulos, K., Sakellaropoulos, G.C. and Nikiforidis, G.C. (2010). Improving the classification accuracy of computer aided diagnosis through multimodality breast imaging. "e-Journal of Science & Technology". [Online] 5(2): 33-39. Available from: http://e-jst.teiath.gr/ en
heal.abstract The purpose of the present study is to evaluate the effect of using multiple modalities on the accuracy achieved by a computer-aided diagnosis system, designed for the detection of breast cancer. Towards this aim, 41 cases of breast cancer were selected, 18 of which were diagnosed as malignant and 23 as benign by an experienced physician. Each case included images acquired by means of two imaging modalities: x-ray and ultrasound. Manual segmentation was performed on every image in order to delineate and extract the regions of interest (ROIs) containing the breast tumors. Then 104 textural features were extracted; 52 from the x-ray images and 52 from the US images. A classification system was designed using the extracted features for every case. Firstly, features extracted from x-ray images alone were used to evaluate the system. The same task was performed for features extracted from US images alone. Lastly the combination of the two feature sets, mentioned afore, was used to evaluate the system. The proposed system that employed the Probabilistic Neural Network (PNN) classifier scored 78.05% in classification accuracy using only features from x-ray. While classification accuracy increased at 82.95% using only features from US, a significant increase in the system’s accuracy (95.12%) was achieved by using combined features from both x-ray and US. In order to minimize total training time, the proposed system adopted the Client-Server model to distribute processing tasks in a group of computers interconnected via a local area network. Depending on the number of clients employed, there was about a 4-fold reduction in training time employing 7 clients. en
heal.publisher Νερατζής, Ηλίας el
heal.publisher Σιανούδης, Ιωάννης el
heal.publisher Βαλαής, Ιωάννης Γ. el
heal.publisher Φούντος, Γεώργιος Π. el
heal.journalName e-Journal of Science & Technology en
heal.journalName e-Περιοδικό Επιστήμης & Τεχνολογίας el
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες