dc.contributor.author | Σιδηρόπουλος, Κωνσταντίνος | el |
dc.contributor.author | Κάβουρας, Διονύσης Α. | el |
dc.contributor.author | Παγώνης, Νικόλαος | el |
dc.contributor.author | Δημητρόπουλος, Νικόλαος | el |
dc.contributor.author | Stonham, John T. | en |
dc.date.accessioned | 2015-01-30T18:01:03Z | |
dc.date.available | 2015-01-30T18:01:03Z | |
dc.date.issued | 2015-01-30 | |
dc.identifier.uri | http://hdl.handle.net/11400/5169 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://e-jst.teiath.gr/ | en |
dc.subject | Nuclear medicine | |
dc.subject | Πυρηνική ιατρική | |
dc.subject | Probabilistic neural networks | |
dc.subject | Graphics processing units | |
dc.subject | Πιθανοτικά νευρωνικά δίκτυα | |
dc.subject | Μονάδες επεξεργασίας γραφικών | |
dc.title | Accelerating the design of probabilistic neural networks for computer aided diagnosis in mammography, employing graphics processing units | en |
heal.type | journalArticle | |
heal.generalDescription | Special issue: Scientific papers presented on the 3nd International Conference on Experiments/Process/System Modeling/Simulation & Optimization in Athens, 8-11 July, 2009. Mini symposium on Medical Imaging, organized by G. Panayiotakis, I. Kandarakis, G. Fountos and I. Valais | en |
heal.classification | Medicine | |
heal.classification | Medical physics | |
heal.classification | Ιατρική | |
heal.classification | Ιατρική φυσική | |
heal.classification | Technology | |
heal.classification | Τεχνολογία | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh00006614 | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh85083001 | |
heal.classificationURI | **N/A**-Ιατρική | |
heal.classificationURI | **N/A**-Ιατρική φυσική | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh85133147 | |
heal.classificationURI | **N/A**-Τεχνολογία | |
heal.keywordURI | http://id.loc.gov/authorities/subjects/sh85093011 | |
heal.language | en | |
heal.access | free | |
heal.recordProvider | Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Tμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας | el |
heal.publicationDate | 2010 | |
heal.bibliographicCitation | Sidiropoulos, K., Cavouras, D.A., Pagonis, N., Dimitropoulos, N. and Stonham, J.T. (2010). Accelerating the design of probabilistic neural networks for computer aided diagnosis in mammography, employing graphics processing units. "e-Journal of Science & Technology". [Online] 5(2): 49-54. Available from: http://e-jst.teiath.gr/ | en |
heal.abstract | The aim of this study is to propose a Probabilistic Neural Network (PNN) classifier system that can operate on a consumer-level graphics processing unit (GPU) and thus, harvest its tremendous parallel computation potential in order to accelerate the training phase. Therefore, the computationally intensive training of a PNN classifier system incorporating the exhaustive search of feature combinations and the leave-one-out techniques, was effectively ported on a medium class GPU device. Programming of the GPU was accomplished by means of the CUDA framework. The proposed system was tested on a real training dataset comprising 80 patterns, each consisting of 20 textural features extracted from digital mammograms (40 normal and 40 containing micro-calcifications) by an experienced physician. The developed GPU-based classifier was trained and the required time was measured. The latter was then compared with the respective training time of the same classifier running on a typical CPU and programmed in the C programming language. According to experimental results, the proposed GPU-based classifier achieved significantly higher training speed, outperforming the CPU-based system by a factor that ranged from 10 to 75 times. | en |
heal.publisher | Νερατζής, Ηλίας | el |
heal.publisher | Σιανούδης, Ιωάννης | el |
heal.publisher | Βαλαής, Ιωάννης Γ. | el |
heal.publisher | Φούντος, Γεώργιος Π. | el |
heal.journalName | e-Journal of Science & Technology | en |
heal.journalName | e-Περιοδικό Επιστήμης & Τεχνολογίας | el |
heal.journalType | peer-reviewed | |
heal.fullTextAvailability | true |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: