Εμφάνιση απλής εγγραφής

dc.contributor.author Σιδηρόπουλος, Κωνσταντίνος el
dc.contributor.author Κάβουρας, Διονύσης Α. el
dc.contributor.author Παγώνης, Νικόλαος el
dc.contributor.author Δημητρόπουλος, Νικόλαος el
dc.contributor.author Stonham, John T. en
dc.date.accessioned 2015-01-30T18:01:03Z
dc.date.available 2015-01-30T18:01:03Z
dc.date.issued 2015-01-30
dc.identifier.uri http://hdl.handle.net/11400/5169
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://e-jst.teiath.gr/ en
dc.subject Nuclear medicine
dc.subject Πυρηνική ιατρική
dc.subject Probabilistic neural networks
dc.subject Graphics processing units
dc.subject Πιθανοτικά νευρωνικά δίκτυα
dc.subject Μονάδες επεξεργασίας γραφικών
dc.title Accelerating the design of probabilistic neural networks for computer aided diagnosis in mammography, employing graphics processing units en
heal.type journalArticle
heal.generalDescription Special issue: Scientific papers presented on the 3nd International Conference on Experiments/Process/System Modeling/Simulation & Optimization in Athens, 8-11 July, 2009. Mini symposium on Medical Imaging, organized by G. Panayiotakis, I. Kandarakis, G. Fountos and I. Valais en
heal.classification Medicine
heal.classification Medical physics
heal.classification Ιατρική
heal.classification Ιατρική φυσική
heal.classification Technology
heal.classification Τεχνολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85083001
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Ιατρική φυσική
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85133147
heal.classificationURI **N/A**-Τεχνολογία
heal.keywordURI http://id.loc.gov/authorities/subjects/sh85093011
heal.language en
heal.access free
heal.recordProvider Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Tμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας el
heal.publicationDate 2010
heal.bibliographicCitation Sidiropoulos, K., Cavouras, D.A., Pagonis, N., Dimitropoulos, N. and Stonham, J.T. (2010). Accelerating the design of probabilistic neural networks for computer aided diagnosis in mammography, employing graphics processing units. "e-Journal of Science & Technology". [Online] 5(2): 49-54. Available from: http://e-jst.teiath.gr/ en
heal.abstract The aim of this study is to propose a Probabilistic Neural Network (PNN) classifier system that can operate on a consumer-level graphics processing unit (GPU) and thus, harvest its tremendous parallel computation potential in order to accelerate the training phase. Therefore, the computationally intensive training of a PNN classifier system incorporating the exhaustive search of feature combinations and the leave-one-out techniques, was effectively ported on a medium class GPU device. Programming of the GPU was accomplished by means of the CUDA framework. The proposed system was tested on a real training dataset comprising 80 patterns, each consisting of 20 textural features extracted from digital mammograms (40 normal and 40 containing micro-calcifications) by an experienced physician. The developed GPU-based classifier was trained and the required time was measured. The latter was then compared with the respective training time of the same classifier running on a typical CPU and programmed in the C programming language. According to experimental results, the proposed GPU-based classifier achieved significantly higher training speed, outperforming the CPU-based system by a factor that ranged from 10 to 75 times. en
heal.publisher Νερατζής, Ηλίας el
heal.publisher Σιανούδης, Ιωάννης el
heal.publisher Βαλαής, Ιωάννης Γ. el
heal.publisher Φούντος, Γεώργιος Π. el
heal.journalName e-Journal of Science & Technology en
heal.journalName e-Περιοδικό Επιστήμης & Τεχνολογίας el
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: Sidiropoulos_15.pdf
    Μέγεθος: 305.4Kb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες