Εμφάνιση απλής εγγραφής

dc.contributor.author Swanepoel, C.J. en
dc.date.accessioned 2015-01-31T16:53:48Z
dc.date.available 2015-01-31T16:53:48Z
dc.date.issued 2015-01-31
dc.identifier.uri http://hdl.handle.net/11400/5252
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.subject Smoothing (Statistics)
dc.subject Απαραμετρικές παλινδρόμησης
dc.subject Nonparametric regression
dc.subject Εξομάλυνση
dc.title Nonparametric regression en
heal.type conferenceItem
heal.secondaryTitle a brief overview and developments en
heal.generalDescription ISSN Σειράς Πρακτικών: 1791 – 8499 el
heal.generalDescription Proceedings Series: 1791 - 8499 en
heal.classification Statistics
heal.classification Social sciences--Statistical methods
heal.classification Στατιστική
heal.classification Κοινωνικές επιστήμες Στατιστικές μέθοδοι
heal.classificationURI http://id.loc.gov/authorities/subjects/sh99001414
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85124018
heal.classificationURI **N/A**-Στατιστική
heal.classificationURI **N/A**-Κοινωνικές επιστήμες Στατιστικές μέθοδοι
heal.keywordURI http://id.loc.gov/authorities/subjects/sh85123709
heal.contributorName Φράγκος, Χρήστος Κ. (1949-) (επιμ.) el
heal.language en
heal.access campus
heal.recordProvider Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας. Σχολή Διοίκησης και Οικονομίας. Τμήμα Διοίκησης Επιχειρήσεων. Κατεύθυνση Διοίκησης Επιχειρήσεων. el
heal.publicationDate 2009-05
heal.bibliographicCitation Swanepoel, C.J. (2009). Nonparametric regression: a brief overview and developments. In Proceedings of the 2nd International Conference: Quantitative and Qualitative Methodologies in the Economic and Administrative Sciences. Athens, 25th to 27th May 2009. Athens: TEI of Athens. pp. 445-463. en
heal.abstract A regression curve describes a general relationship between two or more quantitative variables. In a multivariate situation vectors of explanatory variables as well as response variables may be present. For the simple case of one explanatory variable and one response variable, n data points S : = [(X1, Y1), i = 1, 2, …., n] are collected. The regression relationship can be modeled by Y1, = m(X1)+el where m(x)=E(Y\X=x) is the unknown regression function and the εi's are independent random errors with mean 0 and unknown variance σ2. Nonparametric methods (i.e. smoothing methods) to obtain consistent estimators m(x) of m(x) are revised. Nonparametric methods relax on traditional assumptions and usually only assumes that m belongs to an infinite¬ dimensional collection of smooth functions. Several nonparametric estimators are discussed, mostly of a weighted average form. Several kernel and nearest neighbour approaches to the weight functions are considered. Each of these estimators depends on a smoothing parameter and the critical issue of estimating it is discussed briefly. The performance of m(x) is assessed via methods involving the mean squared error (MSE) and the mean integrated squared error (MISE). Two methods of improving the performance of m(x) are "boosting" and ”bagging", which are respectively an iterative computer intensive method, and an averaging method involving the generation of bootstrap samples. These methods are briefly introduced. en
heal.publisher Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας el
heal.publisher TEI of Athens en
heal.fullTextAvailability true
heal.conferenceName 2nd International Conference: Quantitative and Qualitative Methodologies in the Economic and Administrative Sciences en
heal.conferenceItemType full paper


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες