Εμφάνιση απλής εγγραφής

dc.contributor.author Σαριγιάννη, Κ. el
dc.contributor.author Ασβεστάς, Παντελής Α. el
dc.contributor.author Ματσόπουλος, Γεώργιος Κ. el
dc.contributor.author Νικήτα, Κωνσταντίνα Σ. el
dc.contributor.author Νικήτα, Α. el
dc.date.accessioned 2015-02-07T13:21:07Z
dc.date.available 2015-02-07T13:21:07Z
dc.date.issued 2015-02-07
dc.identifier.uri http://hdl.handle.net/11400/5788
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://ieeexplore.ieee.org/ en
dc.subject Brownian motion processes
dc.subject Computerised tomography
dc.subject Κίνηση Brown
dc.subject Αξονική τομογραφία
dc.title A fractal analysis of CT liver images for the discrimination of hepatic lesions en
heal.type conferenceItem
heal.secondaryTitle a comparative study en
heal.generalDescription Proccedings of the 23rd Annual International Conference of the Engineering in Medicine and Biology Society en
heal.classification Medicine
heal.classification Biomedical engineering
heal.classification Ιατρική
heal.classification Βιοϊατρική τεχνολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85014237
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Βιοϊατρική τεχνολογία
heal.keywordURI http://id.loc.gov/authorities/subjects/sh85017265
heal.contributorName Κελέκης, Δ. el
heal.identifier.secondary DOI: 10.1109/IEMBS.2001.1020508
heal.language en
heal.access campus
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2001
heal.bibliographicCitation Sariyianni, C., Asvestas, P., Matsopoulos, G., Nikita, K., Nikita, A., et al. (2001). A fractal analysis of CT liver images for the discrimination of hepatic lesions: a comparative study. In the In the 23rd Annual International Conference of the Engineering in Medicine and Biology Society. Istanbul, 25th-28th October 2001. vol. 2. pp. 1557-1560. IEEE. Available from: http://ieeexplore.ieee.org/ en
heal.abstract A quantitative study for the discrimination of different hepatic lesions is presented in this paper. The study is based on the fractal analysis of CT liver images in order to estimate their fractal dimension and to differentiate normal liver parenchyma from hepatocellular carcinoma. Four fractal dimension estimators have been implemented throughout this work; three well-established methods and a novel implementation of a method. Analytically, these methods correspond to the power spectrum method, the box counting method, the morphological fractal estimator and the novel modification of the kth-nearest neighbour method. The Fuzzy C-Means algorithm is finally applied revealing that the k-th nearest neighbour method outperforms the other methods; thus discriminating up to 93% of the normal parenchyma and up to 82% of the hepatocellular carcinoma, correctly. en
heal.publisher IEEE en
heal.fullTextAvailability true
heal.conferenceName Annual International Conference of the Engineering in Medicine and Biology Society en
heal.conferenceItemType full paper


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες