Εμφάνιση απλής εγγραφής

dc.contributor.author Δελήμπασης, Κωνσταντίνος Κ. el
dc.contributor.author Ασβεστάς, Παντελής Α. el
dc.contributor.author Μουραβλιάνσκυ, Νικόλαος Α. el
dc.contributor.author Οικονομόπουλος, Θεόδωρος Λ. el
dc.contributor.author Ματσόπουλος, Γεώργιος Κ. el
dc.date.accessioned 2015-02-08T10:06:18Z
dc.date.available 2015-02-08T10:06:18Z
dc.date.issued 2015-02-08
dc.identifier.uri http://hdl.handle.net/11400/5837
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://ieeexplore.ieee.org/ en
dc.subject Artificial immune systems
dc.subject Deformation
dc.subject Τεχνητό ανοσοποιητικό σύστημα
dc.subject Παραμόρφωση
dc.title Artificial immune network for automatic point correspondence in medical images en
heal.type conferenceItem
heal.generalDescription Conference proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society en
heal.classification Medicine
heal.classification Biomedical engineering
heal.classification Ιατρική
heal.classification Βιοϊατρική τεχνολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85014237
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Βιοϊατρική τεχνολογία
heal.identifier.secondary DOI: 10.1109/IEMBS.2007.4352421
heal.language en
heal.access campus
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2007
heal.bibliographicCitation Delibasis, K., Asvestas, P., Mouravliansky, N., Economopoulos, T. and Matsopoulos, G. (2007). Artificial immune network for automatic point correspondence in medical images. In the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Lyon, 22nd -26th Aug 2007. pp. 840-843. IEEE. Available from: http://ieeexplore.ieee.org/ en
heal.abstract In this work, an automatic method for point-by point correspondence between medical images is presented based on the implementation of an Artificial Immune Network (AIN). AIN is a relatively novel population based algorithm, which when applied to multimodal function optimization exhibit the attractive feature of locating, the global minimum of a function, as well as a large number of strong local optimum points. In this work, AIN has been modified and applied to the problem of automatic point correspondence from pairs of images. Additionally, the proposed system is capable of altering the initially selected points on the reference image so that the population of points becomes fitter. The performance of the proposed algorithm using the AIN is evaluated against a standardized method for automatic correspondence, the template matching, in terms of the accuracy of the correspondence. Qualitative and quantitative results presented from in vitro radiographic dental images with synthetic deformations, show that the proposed algorithm outperforms the template matching for automatic point correspondence. en
heal.publisher IEEE en
heal.fullTextAvailability true
heal.conferenceName Annual International Conference of the IEEE Engineering in Medicine and Biology Society en
heal.conferenceItemType full paper


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες