Εμφάνιση απλής εγγραφής

dc.contributor.author Ματσόπουλος, Γεώργιος Κ. el
dc.contributor.author Ασβεστάς, Παντελής Α. el
dc.contributor.author Δελήμπασης, Κωνσταντίνος Κ. el
dc.contributor.author Μουραβλιάνσκυ, Νικόλαος Α. el
dc.contributor.author Zeyen, Thierry G. en
dc.date.accessioned 2015-02-09T08:19:22Z
dc.date.available 2015-02-09T08:19:22Z
dc.date.issued 2015-02-09
dc.identifier.uri http://hdl.handle.net/11400/5898
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://www.elsevier.com en
dc.subject Glaucoma
dc.subject Registration
dc.subject Γλαύκωμα
dc.subject Εγγραφή
dc.title Detection of glaucomatous change based on vessel shape analysis en
heal.type journalArticle
heal.classification Medicine
heal.classification Biomedical engineering
heal.classification Ιατρική
heal.classification Βιοϊατρική τεχνολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85014237
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Βιοϊατρική τεχνολογία
heal.keywordURI http://id.loc.gov/authorities/subjects/sh85055227
heal.identifier.secondary doi:10.1016/j.compmedimag.2007.11.003
heal.language en
heal.access campus
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2008
heal.bibliographicCitation Matsopoulos, G., Asvestas, P., Delibasis, K., Mouravliansky, N. and Zeyen, T. (April 2008). Detection of glaucomatous change based on vessel shape analysis. Computerized Medical Imaging and Graphics. 32(3). pp. 183-192. Elsevier Science Ltd. Available from: http://www.sciencedirect.com [Accessed 10/01/2008] en
heal.abstract Glaucoma, a leading cause of blindness worldwide, is a progressive optic neuropathy with characteristic structural changes in the optic nerve head and concomitant visual field defects. Ocular hypertension (i.e. elevated intraocular pressure without glaucoma) is the most important risk factor to develop glaucoma. Even though a number of variables, including various optic disc and visual field parameters, have been used in order to identify early glaucomatous damage, there is a need for computer-based methods that can detect early glaucomatous progression so that treatment to prevent further progression can be initiated. This paper is focused on the description of a system based on image processing and classification techniques for the estimation of quantitative parameters to define vessel deformation and the classification of image data into two classes: patients with ocular hypertension who develop glaucomatous damage and patients with ocular hypertension who remain stable. The proposed system consists of the retinal image preprocessing module for vessel central axis segmentation, the automatic retinal image registration module based on a novel application of self organizing maps (SOMs) to define automatic point correspondence, the retinal vessel attributes calculation module to select the vessel shape attributes and the data classification module, using an artificial neural network classifier, to perform the necessary subject classification. Implementation of the system to optic disc data from 127 subjects obtained by a fundus camera at regular intervals provided a classification rate of 87.5%, underscoring the value of the proposed system to assist in the detection of early glaucomatous change. en
heal.publisher Elsevier Science Ltd en
heal.journalName Computerized Medical Imaging and Graphics en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες