Εμφάνιση απλής εγγραφής

dc.contributor.author Μαρκάκη, Βασιλική Ε. el
dc.contributor.author Ασβεστάς, Παντελής Α. el
dc.contributor.author Ματσόπουλος, Γεώργιος Κ. el
dc.date.accessioned 2015-02-09T09:24:24Z
dc.date.available 2015-02-09T09:24:24Z
dc.date.issued 2015-02-09
dc.identifier.uri http://hdl.handle.net/11400/5902
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://www.elsevier.com en
dc.subject Automatic correspondence
dc.subject Medical images
dc.subject Αυτόματη αλληλογραφία
dc.subject Ιατρικές εικόνες
dc.title Application of Kohonen network for automatic point correspondence in 2D medical images en
heal.type journalArticle
heal.classification Medicine
heal.classification Biomedical engineering
heal.classification Ιατρική
heal.classification Βιοϊατρική τεχνολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85014237
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Βιοϊατρική τεχνολογία
heal.identifier.secondary doi:10.1016/j.compbiomed.2009.04.006
heal.language en
heal.access campus
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2009
heal.bibliographicCitation Markaki, V., Asvestas, P. and Matsopoulos, G. (July 2009). Application of Kohonen network for automatic point correspondence in 2D medical images. Computers in Biology and Medicine. 39(7). pp. 630-645. Elsevier Science Ltd. Available from: http://www.sciencedirect.com [Accessed 29/05/2009] en
heal.abstract In this paper, a generalized application of Kohonen Network for automatic point correspondence of unimodal medical images is presented. Given a pair of two-dimensional medical images of the same anatomical region and a set of interest points in one of the images, the algorithm detects effectively the set of corresponding points in the second image, by exploiting the properties of the Kohonen self organizing maps (SOMs) and embedding them in a stochastic optimization framework. The correspondences are established by determining the parameters of local transformations that map the interest points of the first image to their corresponding points in the second image. The parameters of each transformation are computed in an iterative way, using a modification of the competitive learning, as implemented by SOMs. The proposed algorithm was tested on medical imaging data from three different modalities (CT, MR and red-free retinal images) subject to known and unknown transformations. The quantitative results in all cases exhibited sub-pixel accuracy. The algorithm also proved to work efficiently in the case of noise corrupted data. Finally, in comparison to a previously published algorithm that was also based on SOMs, as well as two widely used techniques for detection of point correspondences (template matching and iterative closest point), the proposed algorithm exhibits an improved performance in terms of accuracy and robustness. en
heal.publisher Elsevier Science Ltd en
heal.journalName Computers in Biology and Medicine en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες