Εμφάνιση απλής εγγραφής

dc.contributor.author Οικονομόπουλος, Θεόδωρος Λ. el
dc.contributor.author Ασβεστάς, Παντελής Α. el
dc.contributor.author Ματσόπουλος, Γεώργιος Κ. el
dc.date.accessioned 2015-02-09T10:10:21Z
dc.date.available 2015-02-09T10:10:21Z
dc.date.issued 2015-02-09
dc.identifier.uri http://hdl.handle.net/11400/5905
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://www.elsevier.com en
dc.subject Contrast enhancement
dc.subject Iterated function system
dc.subject Ενίσχυση αντίθεσης
dc.subject Επαναλαμβανόμενο σύστημα λειτουργίας
dc.title Contrast enhancement of images using partitioned iterated function systems en
heal.type journalArticle
heal.classification Medicine
heal.classification Biomedical engineering
heal.classification Ιατρική
heal.classification Βιοϊατρική τεχνολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85014237
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Βιοϊατρική τεχνολογία
heal.identifier.secondary doi:10.1016/j.imavis.2009.04.011
heal.language en
heal.access campus
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2010
heal.bibliographicCitation Economopoulos, T., Asvestas, P. and Matsopoulos, G. (January 2010). Contrast enhancement of images using partitioned iterated function systems. Image and Vision Computing. 28(1). pp. 45-54. Elsevier Science Ltd: 2010. Available from: http://www.sciencedirect.com [Accessed 05/05/2009] en
heal.abstract A new algorithm for the contrast enhancement of images, based on the theory of Partitioned Iterated Function System (PIFS), is presented. A PIFS consists of contractive transformations, such that the original image is the fixed point of the union of these transformations. Each transformation involves the contractive affine spatial transform of a square block, as well as the linear transform of the gray levels of its pixels. The transformation of the gray levels is determined by two parameters which adjust the brightness and the contrast of the transformed block. The PIFS is used in order to create a lowpass version of the original image. The contrast-enhanced image is obtained by adding the difference of the original image with its lowpass version, to the original image itself. The proposed algorithm uses a predefined constant value for the contrast parameter, whereas, the parameters of the affine spatial transform, as well as the parameter adjusting the brightness, are calculated using k-dimensional trees. The lowpass version of the original image is obtained applying the PIFS on the original image repeatedly while using a value for the contrast parameter that is lower than the predefined one. Quantitative and qualitative results stress the superior performance of the proposed contrast enhancement algorithm against four other widely used contrast enhancement methods; namely, linear and nonlinear unsharp masking, Contrast Limited Adaptive Histogram Equalization and Local Range Modification. en
heal.publisher Elsevier Science Ltd en
heal.journalName Image and Vision Computing en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες