Εμφάνιση απλής εγγραφής

dc.contributor.author Πολυχρονάκη, Γεωργία Ε. el
dc.contributor.author Κτώνας, Περικλής Υ. el
dc.contributor.author Γκατζώνης, Στυλιανός el
dc.contributor.author Σιατούνη, Άννα Δ. el
dc.contributor.author Ασβεστάς, Παντελής Α. el
dc.date.accessioned 2015-02-09T10:43:54Z
dc.date.available 2015-02-09T10:43:54Z
dc.date.issued 2015-02-09
dc.identifier.uri http://hdl.handle.net/11400/5913
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://iopscience.iop.org/ en
dc.subject Electroencephalography
dc.subject Synthetic signals
dc.subject Ηλεκτροεγκεφαλογράφημα
dc.subject Συνθετικά σήματα
dc.title Comparison of fractal dimension estimation algorithms for epileptic seizure onset detection en
heal.type journalArticle
heal.classification Medicine
heal.classification Biomedical engineering
heal.classification Ιατρική
heal.classification Βιοϊατρική τεχνολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85014237
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Βιοϊατρική τεχνολογία
heal.keywordURI http://lod.nal.usda.gov/19230
heal.contributorName Τσέκου, Χαρά el
heal.contributorName Σακκάς, Διαμιανός el
heal.contributorName Νικήτα, Κωνσταντίνα Σ. el
heal.identifier.secondary doi:10.1088/1741-2560/7/4/046007
heal.language en
heal.access campus
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2010
heal.bibliographicCitation Polychronaki, G., Ktonas, P., Gatzonis, S., Siatouni, A., Asvestas, P., et al. (August 2010). Comparison of fractal dimension estimation algorithms for epileptic seizure onset detection. Journal of Neural Engineering. 7(4). pp. 1-18. IOP Publishing Ltd: 2010. Available from: http://iopscience.iop.org/ en
heal.abstract Fractal dimension (FD) is a natural measure of the irregularity of a curve. In this study the performances of three waveform FD estimation algorithms (i.e. Katz's, Higuchi's and the k-nearest neighbour (k-NN) algorithm) were compared in terms of their ability to detect the onset of epileptic seizures in scalp electroencephalogram (EEG). The selection of parameters involved in FD estimation, evaluation of the accuracy of the different algorithms and assessment of their robustness in the presence of noise were performed based on synthetic signals of known FD. When applied to scalp EEG data, Katz's and Higuchi's algorithms were found to be incapable of producing consistent changes of a single type (either a drop or an increase) during seizures. On the other hand, the k-NN algorithm produced a drop, starting close to the seizure onset, in most seizures of all patients. The k-NN algorithm outperformed both Katz's and Higuchi's algorithms in terms of robustness in the presence of noise and seizure onset detection ability. The seizure detection methodology, based on the k-NN algorithm, yielded in the training data set a sensitivity of 100% with 10.10 s mean detection delay and a false positive rate of 0.27 h−1, while the corresponding values in the testing data set were 100%, 8.82 s and 0.42 h−1, respectively. The above detection results compare favourably to those of other seizure onset detection methodologies applied to scalp EEG in the literature. The methodology described, based on the k-NN algorithm, appears to be promising for the detection of the onset of epileptic seizures based on scalp EEG. en
heal.publisher IOP Publishing Ltd en
heal.journalName Journal of Neural Engineering en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες