dc.contributor.author | Δελήμπασης, Κωνσταντίνος Κ. | el |
dc.contributor.author | Ασβεστάς, Παντελής Α. | el |
dc.contributor.author | Ματσόπουλος, Γεώργιος Κ. | el |
dc.date.accessioned | 2015-02-09T10:59:55Z | |
dc.date.available | 2015-02-09T10:59:55Z | |
dc.date.issued | 2015-02-09 | |
dc.identifier.uri | http://hdl.handle.net/11400/5916 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://www.elsevier.com | en |
dc.subject | Medical image registration | |
dc.subject | Artificial immune system | |
dc.subject | Ιατρική εικόνα | |
dc.subject | Τεχνητό ανοσοποιητικό σύστημα | |
dc.title | Automatic point correspondence using an artificial immune system optimization technique for medical image registration | en |
heal.type | journalArticle | |
heal.classification | Medicine | |
heal.classification | Biomedical engineering | |
heal.classification | Ιατρική | |
heal.classification | Βιοϊατρική τεχνολογία | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh00006614 | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh85014237 | |
heal.classificationURI | **N/A**-Ιατρική | |
heal.classificationURI | **N/A**-Βιοϊατρική τεχνολογία | |
heal.identifier.secondary | doi:10.1016/j.compmedimag.2010.09.002 | |
heal.language | en | |
heal.access | campus | |
heal.recordProvider | Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. | el |
heal.publicationDate | 2011 | |
heal.bibliographicCitation | Delibasis, K., Asvestas, P. and Matsopoulos, G. (January 2011). Automatic point correspondence using an artificial immune system optimization technique for medical image registration. Computerized Medical Imaging and Graphics. 35(1). pp. 31-41. Elsevier Science Ltd: 2011. Available from: http://www.sciencedirect.com [Accessed 02/10/2010] | en |
heal.abstract | In this paper, an automatic method for determining pairs of corresponding points between medical images is proposed. The method is based on the implementation of an artificial immune system (AIS). AIS is a relatively novel, population based category of algorithms, inspired by theoretical immunologic models. When used as function optimizers, AIS have the attractive property of locating the global optimum of a function as well as a large number of strong local optimum points. In this work, AIS has been applied both for the extraction of an optimal set of candidate points on the reference image and the definition of their corresponding ones on the second image. The performance of the proposed AIS algorithm is evaluated against the widely used Iterative Closest Point (ICP) algorithm in terms of the accuracy of the obtained correspondences and in terms of the accuracy of the point-based registration by the two correspondence algorithms and the Mutual Information criterion, as an intensity-based registration method. Qualitative and quantitative results involving 92 X-ray dental and 10 retinal image pairs subject to known and unknown transformations are presented. The results indicate a superior performance of the proposed AIS algorithm with respect to the ICP algorithm and the Mutual Information, in terms of both correct correspondence and registration accuracy. | en |
heal.publisher | Elsevier Science Ltd | en |
heal.journalName | Computerized Medical Imaging and Graphics | en |
heal.journalType | peer-reviewed | |
heal.fullTextAvailability | true |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: