Εμφάνιση απλής εγγραφής

dc.contributor.author Δελήμπασης, Κωνσταντίνος Κ. el
dc.contributor.author Ασβεστάς, Παντελής Α. el
dc.contributor.author Ματσόπουλος, Γεώργιος Κ. el
dc.date.accessioned 2015-02-09T10:59:55Z
dc.date.available 2015-02-09T10:59:55Z
dc.date.issued 2015-02-09
dc.identifier.uri http://hdl.handle.net/11400/5916
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://www.elsevier.com en
dc.subject Medical image registration
dc.subject Artificial immune system
dc.subject Ιατρική εικόνα
dc.subject Τεχνητό ανοσοποιητικό σύστημα
dc.title Automatic point correspondence using an artificial immune system optimization technique for medical image registration en
heal.type journalArticle
heal.classification Medicine
heal.classification Biomedical engineering
heal.classification Ιατρική
heal.classification Βιοϊατρική τεχνολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85014237
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Βιοϊατρική τεχνολογία
heal.identifier.secondary doi:10.1016/j.compmedimag.2010.09.002
heal.language en
heal.access campus
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2011
heal.bibliographicCitation Delibasis, K., Asvestas, P. and Matsopoulos, G. (January 2011). Automatic point correspondence using an artificial immune system optimization technique for medical image registration. Computerized Medical Imaging and Graphics. 35(1). pp. 31-41. Elsevier Science Ltd: 2011. Available from: http://www.sciencedirect.com [Accessed 02/10/2010] en
heal.abstract In this paper, an automatic method for determining pairs of corresponding points between medical images is proposed. The method is based on the implementation of an artificial immune system (AIS). AIS is a relatively novel, population based category of algorithms, inspired by theoretical immunologic models. When used as function optimizers, AIS have the attractive property of locating the global optimum of a function as well as a large number of strong local optimum points. In this work, AIS has been applied both for the extraction of an optimal set of candidate points on the reference image and the definition of their corresponding ones on the second image. The performance of the proposed AIS algorithm is evaluated against the widely used Iterative Closest Point (ICP) algorithm in terms of the accuracy of the obtained correspondences and in terms of the accuracy of the point-based registration by the two correspondence algorithms and the Mutual Information criterion, as an intensity-based registration method. Qualitative and quantitative results involving 92 X-ray dental and 10 retinal image pairs subject to known and unknown transformations are presented. The results indicate a superior performance of the proposed AIS algorithm with respect to the ICP algorithm and the Mutual Information, in terms of both correct correspondence and registration accuracy. en
heal.publisher Elsevier Science Ltd en
heal.journalName Computerized Medical Imaging and Graphics en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες