Εμφάνιση απλής εγγραφής

dc.contributor.author Ζούλιας, Εμμανουήλ Α. el
dc.contributor.author Ασβεστάς, Παντελής Α. el
dc.contributor.author Ματσόπουλος, Γεώργιος Κ. el
dc.contributor.author Τσελένη-Μπαλαφούτα, Σοφία el
dc.date.accessioned 2015-02-09T11:15:38Z
dc.date.issued 2015-02-09
dc.identifier.uri http://hdl.handle.net/11400/5918
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://www.ncbi.nlm.nih.gov/ en
dc.subject Neural networks (Computer science)
dc.subject Classification--Archives
dc.subject Τεχνητά νευρωνικά δίκτυα
dc.subject Ταξινόμηση
dc.title A decision support system for assisting fine needle aspiration diagnosis of thyroid malignancy en
heal.type journalArticle
heal.classification Medicine
heal.classification Biomedical engineering
heal.classification Ιατρική
heal.classification Βιοϊατρική τεχνολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85014237
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Βιοϊατρική τεχνολογία
heal.keywordURI http://id.loc.gov/authorities/subjects/sh90001937
heal.keywordURI http://id.loc.gov/authorities/subjects/sh85026720
heal.dateAvailable 10000-01-01
heal.language en
heal.access forever
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2011
heal.bibliographicCitation Zoulias, E., Asvestas, P., Matsopoulos, G. and Tseleni-Balafouta, S. (August 2011). A decision support system for assisting fine needle aspiration diagnosis of thyroid malignancy. Analytical and Quantitative Cytology and Histology. 33(4). pp. 215-222. Science Printers and Publishers Inc: 2011. en
heal.abstract OBJECTIVE: To assist diagnosis of thyroid malignancy, implementing a decision support system (DSS) using fine needle aspiration biopsy (FNAB) data. STUDY DESIGN: The set of 2,035 thyroid smears contained 1,886 smears of nonmalignancy (class 1) and 150 smears of malignancy (class 2) verified histologically. For each smear, 67 medical features were considered by the expert, forming 2,036 feature vectors, which were fed into a DSS for discriminating between malignant and nonmalignant smears. The DSS comprised a feature selection and classification module using a combination of three classifiers, the artificial neural network, the support vector machines, and the k-nearest neighbor, under the majority vote procedure. RESULTS: The overall classification accuracy of the DSS was 98.6%, marginally better than the FNAB (97.3%). The DSS had lower sensitivity (89.1%) and better specificity (99.4%) compared to the FNAB. Regarding the smears characterized as "suspicious" by FNAB, a significant improvement of overall accuracy was obtained by the proposed DSS system (84.6%) compared to the FNAB (50.0%). CONCLUSION: The proposed DSS provides significant improvement compared to FNAB regarding discrimination of smears characterized by an expert as "suspicious," reducing the number of patients undergoing surgical procedures. en
heal.publisher Science Printers and Publishers Inc en
heal.journalName Analytical and Quantitative Cytology and Histology en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες