Εμφάνιση απλής εγγραφής

dc.contributor.author Βλαχοκώστα, Αλεξάνδρα Α. el
dc.contributor.author Ασβεστάς, Παντελής Α. el
dc.contributor.author Γκρόζου, Φανή el
dc.contributor.author Λαβασίδης, Λάζαρος el
dc.contributor.author Ματσόπουλος, Γεώργιος Κ. el
dc.date.accessioned 2015-02-09T12:47:43Z
dc.date.available 2015-02-09T12:47:43Z
dc.date.issued 2015-02-09
dc.identifier.uri http://hdl.handle.net/11400/5925
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.subject Hysteroscopy
dc.subject Endometrium
dc.subject Υστεροσκόπηση
dc.subject Ενδομήτριο
dc.title Classification of hysteroscopical images using texture and vessel descriptors en
heal.type journalArticle
heal.classification Medicine
heal.classification Biomedical engineering
heal.classification Ιατρική
heal.classification Βιοϊατρική τεχνολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85014237
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Βιοϊατρική τεχνολογία
heal.keywordURI http://id.loc.gov/authorities/subjects/sh85063859
heal.keywordURI http://id.loc.gov/authorities/subjects/sh85043080
heal.contributorName Πασχόπουλος, Μηνάς el
heal.identifier.secondary DOI 10.1007/s11517-013-1058-1
heal.language en
heal.access campus
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2013
heal.bibliographicCitation Vlachokosta, A., Asvestas, P., Gkrozou, F., Lavasidis, L., Matsopoulos, G., et al. (2013). Classification of hysteroscopical images using texture and vessel descriptors. Medical & Biological Engineering & Computing. vol. 51. pp. 859–867. Springer-Verlag: 2013. Available from: http://download.springer.com [Accessed 18/03/2013] en
heal.abstract In recent years, hysteroscopy, used as an outpatient office procedure, in combination with endometrial biopsy, has demonstrated its great potential as the method of first choice in the diagnosis of various gynecological abnormalities including abnormal uterine bleeding (AUB) and endometrial cancer (CA). In patients suffering with AUB, the blood vessels of the endometrium are hypertrophic, whereas in the case of CA vascularization is irregular or anarchic. In this paper, a methodology for the classification of hysteroscopical images of endometrium using vessel and texture features is presented. A total of 28 patients with abnormal uterine bleeding, 10 patients with endometrial cancer and 39 subjects with no pathological condition were imaged. 16 of the patients with AUB were premenopausal and 12 postmenopausal, all with CA were postmenopausal, and all with no pathological condition were premenopausal. All images were examined for the appearance of endometrial vessels and non-vascular structures. For each image, 167 texture and vessel’s features were initially extracted, which were reduced after feature selection in only 4 features. The images were classified into three categories using artificial neural networks and the reported classification accuracy was 91.2 %, while the specificity and sensitivity were 83.8 and 93.6 % respectively. en
heal.publisher Springer-Verlag en
heal.journalName Medical & Biological Engineering & Computing en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες