Εμφάνιση απλής εγγραφής

dc.contributor.author Ξύδας, Ιωάννης el
dc.contributor.author Μιαούλης, Γεώργιος el
dc.contributor.author Bonnefoi, Pierre-François en
dc.contributor.author Πλεμμένος, Δημήτρης el
dc.contributor.author Ghazanfarpour, Djamchid en
dc.date.accessioned 2015-02-11T23:28:51Z
dc.date.available 2015-02-11T23:28:51Z
dc.date.issued 2015-02-12
dc.identifier.uri http://hdl.handle.net/11400/6078
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://e-jst.teiath.gr/ en
dc.subject Web Visual Analytics
dc.subject Web Attacks Visualization
dc.subject Web Intrusion Detection
dc.subject Evolutionary Artificial Neural Networks
dc.subject Network Security
dc.subject Surveillance Aid
dc.subject Εξελιγμένα Τεχνητά Νευρωνικά Δίκτυα
dc.subject Ασφάλεια Δικτύων
dc.subject Ενίσχυση επιτήρησης
dc.title Using visual analytics for web intrusion detection en
heal.type journalArticle
heal.classification Science
heal.classification Mathematics
heal.classification Επιστήμες
heal.classification Μαθηματικά
heal.classificationURI http://zbw.eu/stw/descriptor/15685-2
heal.classificationURI http://zbw.eu/stw/thsys/70269
heal.classificationURI **N/A**-Επιστήμες
heal.classificationURI **N/A**-Μαθηματικά
heal.language en
heal.access free
heal.publicationDate 2013
heal.bibliographicCitation Xydas, I., Miaoulis, G., Bonnefoi, P.-F., Plemenos, D. and Ghazanfarpour, D. (2013). Using visual analytics for web intrusion detection. "e-Journal of Science & Technology". [Online] 8(4): 1-14. Available from: http://e-jst.teiath.gr/ en
heal.abstract Web sites are likely to be regularly scanned and attacked by both automated and manual means. Intrusion Detection Systems (IDS) assist security analysts by automatically identifying potential attacks from network activity and produce alerts describing the details of these intrusions. However, IDS have problems, such as false positives, operational issues in high-speed environments and the difficulty of detecting unknown threats. Much of ID research has focused on improving the accuracy and operation of IDSs but surprisingly there has been very little research into supporting the security analysts’ intrusion detection tasks. Lately, security analysts face an increasing workload as their networks expand and attacks become more frequent. In this paper we describe an ongoing surveillance prototype system which offers a visual aid to the web and security analyst by monitoring and exploring 3D graphs. The system offers a visual surveillance of the network activity on a web server for both normal and anomalous or malicious activity. Colours are used on the 3D graphics to indicate different categories of web attacks and the analyst has the ability to navigate into the web requests, of either normal or malicious traffic. Artificial Intelligence is combined with Visualization to detect and display unauthorized web traffic. en
heal.publisher Νερατζής, Ηλίας el
heal.publisher Σιανούδης, Ιωάννης el
heal.journalName e-Journal of Science & Technology en
heal.journalName e-Περιοδικό Επιστήμης & Τεχνολογίας el
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες