dc.contributor.author | Παπαγεωργίου, Γεώργιος | el |
dc.contributor.author | Φαμέλης, Ιωάννης Θ. | el |
dc.date.accessioned | 2015-02-13T16:01:34Z | |
dc.date.available | 2015-02-13T16:01:34Z | |
dc.date.issued | 2015-02-13 | |
dc.identifier.uri | http://hdl.handle.net/11400/6153 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://www.elsevier.com | en |
dc.subject | Delay differential equations | |
dc.subject | Scaling | |
dc.subject | Εξισώσεις με καθυστέρηση | |
dc.subject | Απολέπιση | |
dc.title | On using explicit RKN methods for the treatment of retarded differential equations with periodic solutions | en |
heal.type | journalArticle | |
heal.classification | Electronics | |
heal.classification | Applied mathematics | |
heal.classification | Ηλεκτρονική | |
heal.classification | Εφαρμοσμένα μαθηματικά | |
heal.classificationURI | http://zbw.eu/stw/descriptor/10455-2 | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh93002523 | |
heal.classificationURI | **N/A**-Ηλεκτρονική | |
heal.classificationURI | **N/A**-Εφαρμοσμένα μαθηματικά | |
heal.keywordURI | http://id.loc.gov/authorities/subjects/sh85037892 | |
heal.identifier.secondary | doi:10.1016/S0096-3003(98)10020-6 | |
heal.language | en | |
heal.access | campus | |
heal.recordProvider | Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. | el |
heal.publicationDate | 1999 | |
heal.bibliographicCitation | Papageorgiou, G. and Famelis, I. (July 1999). On using explicit RKN methods for the treatment of retarded differential equations with periodic solutions. Applied Mathematics and Computation. 102(1). pp. 63-76. Elsevier Science Ltd: 1999. Available from: http://www.sciencedirect.com [Accessed 07/07/1999] | en |
heal.abstract | In this work we dial with the treatment of second order retarded differential equations with periodic solutions by explicit Runge–Kutta–Nyström methods. In the past such methods have not been studied for this class of problems. We refer to the underline theory and study the behavior of various methods proposed in the literature when coupled with Hermite interpolants. Among them we consider methods having the characteristic of phase–lag order. Then we consider continuous extensions of the methods to treat the retarded part of the problem. Finally we construct scaled extensions and high order interpolants for RKN pairs which have better characteristics compared to analogous methods proposed in the literature. In all cases numerical tests and comparisons are done over various test problems. | en |
heal.publisher | Elsevier Science Ltd | en |
heal.journalName | Applied Mathematics and Computation | en |
heal.journalType | peer-reviewed | |
heal.fullTextAvailability | true |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: