dc.contributor.author | Παλιγγίνης, Σ. | el |
dc.contributor.author | Παπαγεωργίου, Γεώργιος | el |
dc.contributor.author | Φαμέλης, Ιωάννης Θ. | el |
dc.date.accessioned | 2015-02-14T10:10:05Z | |
dc.date.available | 2015-02-14T10:10:05Z | |
dc.date.issued | 2015-02-14 | |
dc.identifier.uri | http://hdl.handle.net/11400/6201 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://www.elsevier.com | en |
dc.subject | Fuzzy numbers | |
dc.subject | Numerical solution | |
dc.subject | Ασαφής αριθμοί | |
dc.subject | Αριθμητική λύση | |
dc.title | Runge kutta methods for fuzzy differetial equations | en |
heal.type | journalArticle | |
heal.generalDescription | Special Issue International Conference on Computational Methods in Sciences and Engineering 2005 | en |
heal.classification | Mathematics | |
heal.classification | Applied mathematics | |
heal.classification | Μαθηματικά | |
heal.classification | Εφαρμοσμένα μαθηματικά | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh85082139 | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh93002523 | |
heal.classificationURI | **N/A**-Μαθηματικά | |
heal.classificationURI | **N/A**-Εφαρμοσμένα μαθηματικά | |
heal.keywordURI | http://id.loc.gov/authorities/subjects/sh85052626 | |
heal.identifier.secondary | doi:10.1016/j.amc.2008.06.017 | |
heal.language | en | |
heal.access | campus | |
heal.recordProvider | Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. | el |
heal.publicationDate | 2009 | |
heal.bibliographicCitation | Palligkinis, S., Papageorgiou, G. and Famelis, I. (March 2009). Runge kutta methods for fuzzy differetial equations. Applied Mathematics and Computation. 209(1). pp. 97-105. Elsevier Science Ltd: 2009. Available from: http://www.sciencedirect.com [Accessed 14/06/2008] | en |
heal.abstract | Fuzzy differential equations (FDEs) generalize the concept of crisp initial value problems. In this article, we deal with the numerical solution of FDEs. The notion of convergence of a numerical method is defined and a category of problems which is more general than the one already found in the numerical analysis literature is solved. Efficient s-stage Runge–Kutta methods are used for the numerical solution of these problems and the convergence of the methods is proved. Several examples comparing these methods with the previously developed Euler method are displayed. | en |
heal.publisher | Elsevier Science Ltd | en |
heal.journalName | Applied Mathematics and Computation | en |
heal.journalType | peer-reviewed | |
heal.fullTextAvailability | true |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: