dc.contributor.author | Τσίτουρας, Χαράλαμπος | el |
dc.contributor.author | Φαμέλης, Ιωάννης Θ. | el |
dc.date.accessioned | 2015-02-14T11:42:33Z | |
dc.date.available | 2015-02-14T11:42:33Z | |
dc.date.issued | 2015-02-14 | |
dc.identifier.uri | http://hdl.handle.net/11400/6229 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://www.elsevier.com | en |
dc.subject | Neural networks | |
dc.subject | Kepler problem | |
dc.subject | Νευρωνικά δίκτυα | |
dc.subject | Κέπλερ πρόβλημα | |
dc.title | Using neural networks for the derivation of runge-kutta-nystrom pairs for integration of orbits | en |
heal.type | journalArticle | |
heal.classification | Physics | |
heal.classification | Mathematical physics | |
heal.classification | Φυσική | |
heal.classification | Μαθηματική φυσική | |
heal.classificationURI | http://skos.um.es/unescothes/C02994 | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh85082129 | |
heal.classificationURI | **N/A**-Φυσική | |
heal.classificationURI | **N/A**-Μαθηματική φυσική | |
heal.keywordURI | http://zbw.eu/stw/descriptor/19808-6 | |
heal.identifier.secondary | doi:10.1016/j.newast.2011.11.009 | |
heal.language | en | |
heal.access | campus | |
heal.recordProvider | Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. | el |
heal.publicationDate | 2012 | |
heal.bibliographicCitation | Tsitouras, Ch. and Famelis, I. (May 2012). Using neural networks for the derivation of runge-kutta-nystrom pairs for integration of orbits. New Astronomy . 17(4). Pp. 469-473. Elsevier Science Ltd: 2012. Available from: http://www.sciencedirect.com [Accessed 30/11/2011] | en |
heal.abstract | In this paper we present Runge–Kutta–Nyström (RKN) pairs of orders 4(3) and 6(4). We choose a test orbit from the Kepler problem to integrate for a specific tolerance. Then we train the free parameters of the above RKN4(3) and RKN6(4) families to perform optimally. For that we form a neural network approach and minimize its objective function using a differential evolution optimization technique. Finally we observe that the produced pairs outperform standard pairs from the literature for Pleiades orbits and Kepler problem over a wide range of eccentricities and tolerances. | en |
heal.publisher | Elsevier Science Ltd | en |
heal.journalName | New Astronomy | en |
heal.journalType | peer-reviewed | |
heal.fullTextAvailability | true |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: