Εμφάνιση απλής εγγραφής

dc.contributor.author Λεοντίδης, Γεώργιος Κ. el
dc.date.accessioned 2015-02-14T11:48:42Z
dc.date.available 2015-02-14T11:48:42Z
dc.date.issued 2015-02-14
dc.identifier.uri http://hdl.handle.net/11400/6230
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://e-jst.teiath.gr/ en
dc.subject Centerlines
dc.subject Vessel’s width
dc.subject Retina
dc.subject Bifurcation points
dc.subject Skeleton
dc.subject Άξονες
dc.subject Πλάτος αγγείου
dc.subject Σημεία διακλάδωσης
dc.subject Σκελετός
dc.subject Αμφιβληστροειδής χιτώνας
dc.title Retina vessel width estimation using bifurcation points to track vessels en
heal.type journalArticle
heal.classification Medicine
heal.classification Medical physics
heal.classification Ιατρική
heal.classification Ιατρική φυσική
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85083001
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Ιατρική φυσική
heal.keywordURI http://id.loc.gov/authorities/subjects/sh85113322
heal.language en
heal.access free
heal.publicationDate 2014
heal.bibliographicCitation Leontidis, G.K. (2014). Retina vessel width estimation using bifurcation points to track vessels. "e-Journal of Science & Technology". [Online] 9(1): 7-12. Available from: http://e-jst.teiath.gr/ en
heal.abstract Retina vessel segmentation is a challenging task that concerns scientists for many years. Vasculature gives us information for possible diseases like diabetic retinopathy, hypertension etc. Different algorithms have been developed using matched filters, pattern recognition techniques and scale-space techniques, which present reliable results. Currently the most challenging task is the estimation of vessels’ width of the whole retina vasculature. At this article, a method for the calculation of vessels’ minimum, maximum and mean width of every single vessel that we obtain from the already segmented binary image is proposed. Having this information we can evaluate the cardiovascular functionality, such as volumetric flow, flow velocity, and tension at the vessels’ walls during blood circulation. The proposed algorithm tracks the bifurcation points of the whole vasculature using the skeleton of the initial image and uses a decision making technique to decide which vessel to cross each time. Finally the algorithm crosses the vessel pixel-by-pixel and calculates the width until the end of the vessel. The whole procedure is automatic and we can see the remaining skeleton in our screen, after estimating a single vessel’s width, since this vessel disappears from the image. Each vessel’s width is calculated with pixel accuracy. en
heal.publisher Νερατζής, Ηλίας el
heal.publisher Σιανούδης, Ιωάννης el
heal.journalName e-Journal of Science & Technology en
heal.journalName e-Περιοδικό Επιστήμης & Τεχνολογίας el
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες