Εμφάνιση απλής εγγραφής

dc.contributor.author Φράγκου, Παυλίνα el
dc.contributor.author Fragkou, Pavlina en
dc.date.accessioned 2015-04-25T09:08:52Z
dc.date.available 2015-04-25T09:08:52Z
dc.date.issued 2015-04-25
dc.identifier.uri http://hdl.handle.net/11400/8909
dc.rights Default License
dc.source http://history.icininfo.net/2011/ el
dc.source http://history.icininfo.net/2011/FileStore/procs_INFO_2011.pdf el
dc.subject Text segmentation
dc.subject Κατάτμηση κειμένου
dc.subject Named entity recognition
dc.subject Αναγνώριση οντότητας
dc.subject Co-reference resolution
dc.subject Συν-αναφορά ψήφισμα
dc.subject Information extraction
dc.subject Εξαγωγή πληροφορίας
dc.title Text segmentation using named entity recognition and co-reference resolution in greek texts en
heal.type conferenceItem
heal.classification Information sciences
heal.classification Library science
heal.classification Πληροφόρηση, Επιστήμη της Πληροφόρησης
heal.classification Βιβλιοθηκονομία
heal.classificationURI http://skos.um.es/unescothes/C01988
heal.classificationURI http://skos.um.es/unescothes/C02286
heal.classificationURI **N/A**-Πληροφόρηση, Επιστήμη της Πληροφόρησης
heal.classificationURI **N/A**-Βιβλιοθηκονομία
heal.contributorName Γιαννακόπουλος, Γεώργιος Α. (συντ.) el
heal.contributorName Σακκάς, Δαμιανός Π. (συντ.) el
heal.language en
heal.access free
heal.recordProvider Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας. Σχολή Διοίκησης και Οικονομίας. Τμήμα Βιβλιοθηκονομίας και Συστημάτων Πληροφόρησης el
heal.publicationDate 2011-09
heal.bibliographicCitation Fragkou, P. (2011) Text segmentation using named entity recognition and co-reference resoluion in greek texts. In "International Conference on Integrated Information (IC-ININFO 2011)" Kos Island, Greece, 29 September - 3 Octomber 2011. pp. 34-41. Available from: http://history.icininfo.net/2011/FileStore/procs_INFO_2011.pdf [Accessed: 24/04/20105] en
heal.abstract In this paper we examine the benefit of performing named entity recognition and co-reference resolution to a Greek corpus used for text segmentation. Segments consist of portions among one of the 300 documents published by ten different authors in the Greek newspaper "To Vima". The aim here is to examine whether the combination of text segmentation and information extraction (and most specifically the named entity recognition and co-reference resolution steps) can prove to be beneficial for the identification of the various topics that appear in a document. Named entity recognition was performed using an already existing tool which was trained on a similar corpus. The produced annotations were manually corrected and enriched in order to cover four types of named entities (i.e. person name, organization, location and time). Coreference resolution and most specifically substitution of every reference of the same instance with the same named entity identifier was performed in a subsequent step. The evaluation using three well known text segmentation algorithms leads to the conclusion that, the benefit highly depends on the segment's topic, the number of named entity instances appearing in it, as well as the segment's length. en
heal.fullTextAvailability true
heal.conferenceName International Conference on Integrated Information (IC-ININFO 2011) el
heal.conferenceItemType full paper


Αρχεία σε αυτό το τεκμήριο

Εμφάνιση απλής εγγραφής