dc.contributor.author | Seonho, Kim | en |
dc.contributor.author | Woondong, Yeo | en |
dc.contributor.author | Byong-Youl, Coh | en |
dc.contributor.author | Waqas, Rasheed | en |
dc.contributor.author | Jaewoo, Kang | en |
dc.date.accessioned | 2015-04-25T16:36:45Z | |
dc.date.available | 2015-04-25T16:36:45Z | |
dc.date.issued | 2015-04-25 | |
dc.identifier.uri | http://hdl.handle.net/11400/8930 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://history.icininfo.net/2011/ | el |
dc.source | http://history.icininfo.net/2011/FileStore/procs_INFO_2011.pdf | el |
dc.subject | Machine learning | |
dc.subject | SCOPUS | |
dc.subject | PATSTAT | |
dc.subject | Emerging trend detection | |
dc.subject | Αναδυόμενες τάσης ανίχνευσης | |
dc.subject | Μηχανή μάθησησης | |
dc.subject | Artificial neural network | |
dc.subject | Τεχνητό νευρωνικό δίκτυο | |
dc.title | A semi-automatic emerging technology trend classifier using SCOPUS and PATSTAT | en |
heal.type | conferenceItem | |
heal.classification | Computer science | |
heal.classification | Information systems | |
heal.classification | Πληροφορική | |
heal.classification | Πληροφοριακά συστήματα | |
heal.classificationURI | http://skos.um.es/unescothes/C00750 | |
heal.classificationURI | http://skos.um.es/unescothes/C01993 | |
heal.classificationURI | **N/A**-Πληροφορική | |
heal.classificationURI | **N/A**-Πληροφοριακά συστήματα | |
heal.keywordURI | http://id.loc.gov/authorities/subjects/sh85079324 | |
heal.contributorName | Γιαννακόπουλος, Γεώργιος Α. (συντ.) | el |
heal.contributorName | Σακκάς, Δαμιανός Π. (συντ.) | el |
heal.language | en | |
heal.access | free | |
heal.recordProvider | Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας. Σχολή Διοίκησης και Οικονομίας. Τμήμα Βιβλιοθηκονομίας και Συστημάτων Πληροφόρησης | el |
heal.publicationDate | 2011-09 | |
heal.bibliographicCitation | Seonho, K., Woondong, Y, Byong-Youl, C., Waqas, R. and Jaewoo, K. (2011). A semi-automatic emerging technology trend classifier using SCOPUS and PATSTAT. International Conference on Integrated Information (IC-ININFO 2011), Kos Island, Greece, 29 September - 3 Octomber 2011. pp. 62-65. Available from: http://history.icininfo.net/2011/FileStore/procs_INFO_2011.pdf | en |
heal.abstract | Identifying Emerging Technology Trends is crucial for decision makers of nations and organizations in order to use limited resources, such as time, money, etc., efficiently. Many researchers have proposed emerging trend detection systems based on a popularity analysis of the document, but this still needs to be improved. In this paper, an emerging trend detection classifier is proposed which uses both academic and industrial data, SCOPUS [1] and PATSTAT [2]. Unlike most previous research, our emerging technology trend classifier utilizes supervised, semi-automatic, machine learning techniques to improve the precision of the results. In addition, the citation information from among the SCOPUS data is analyzed to identify the early signals of emerging technology trends. | en |
heal.fullTextAvailability | true | |
heal.conferenceName | International Conference on Integrated Information (IC-ININFO 2011) | en |
heal.conferenceItemType | full paper |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: