dc.contributor.author | Bonney, Wilfred | en |
dc.date.accessioned | 2015-04-27T14:40:57Z | |
dc.date.available | 2015-04-27T14:40:57Z | |
dc.date.issued | 2015-04-27 | |
dc.identifier.uri | http://hdl.handle.net/11400/9070 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://history.icininfo.net/2011/ | el |
dc.source | http://history.icininfo.net/2011/ | el |
dc.subject | Data mining | |
dc.subject | Database management | |
dc.subject | Algorithms | |
dc.subject | Εξόρυξη δεδομένων | |
dc.subject | Διαχείρισης βάσεων δεδομένων | |
dc.subject | Clinical datasets | |
dc.subject | Κλινικά σύνολα δεδομένων | |
dc.subject | Αλγόριθμοι | |
dc.title | Applicability of data mining algoritms on clinical datasets | en |
heal.type | conferenceItem | |
heal.classification | Computer science | |
heal.classification | Mathematics | |
heal.classification | Πληροφορική | |
heal.classification | Μαθηματικά | |
heal.classificationURI | http://skos.um.es/unescothes/C00750 | |
heal.classificationURI | http://zbw.eu/stw/thsys/70269 | |
heal.classificationURI | **N/A**-Πληροφορική | |
heal.classificationURI | **N/A**-Μαθηματικά | |
heal.keywordURI | http://zbw.eu/stw/descriptor/19807-1 | |
heal.keywordURI | http://id.loc.gov/authorities/subjects/sh85035848 | |
heal.keywordURI | http://skos.um.es/unescothes/C00134 | |
heal.contributorName | Γιαννακόπουλος, Γεώργιος Α. (συντ.) | el |
heal.contributorName | Σακκάς, Δαμιανός Π. (συντ.) | el |
heal.language | en | |
heal.access | free | |
heal.recordProvider | Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας. Σχολή Διοίκησης και Οικονομίας. Τμήμα Βιβλιοθηκονομίας και Συστημάτων Πληροφόρησης | el |
heal.publicationDate | 2011-09 | |
heal.bibliographicCitation | Bonney, W. (2011). Applicability of data mining algoritms on clinical datasets. International Conference on Integrated Information (IC-ININFO 2011), Kos Island, Greece, 29 September - 3 Octomber 2011. pp. 218-220. Available from: http://history.icininfo.net/2011/FileStore/procs_INFO_2011.pdf | en |
heal.abstract | The essential need of database management systems to improve the quality of healthcare delivery makes the use of data mining techniques a phenomenon that cannot be ignored. Today, many healthcare providers are in the business of capturing and storing patients' personalized health information such as demographics, family history, allergies, medications, and diagnosis. This information is generally collected not only to make the healthcare practitioner well-informed about the health status of patients but also to improve the efficiency of care delivery and reduce waiting times. This paper aims to discover the applicability of data mining algorithms on clinical datasets. An experimental study was conducted to compare the performance of four different learning algorithms across four clinical datasets using 10 fold cross-validations. | en |
heal.fullTextAvailability | true | |
heal.conferenceName | International Conference on Integrated Information (IC-ININFO 2011) | el |
heal.conferenceItemType | full paper |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: