dc.contributor.author | Πήλιουρας, Νικόλαος | el |
dc.contributor.author | Καλατζής, Ιωάννης | el |
dc.contributor.author | Δημητρόπουλος, Νικόλαος | el |
dc.contributor.author | Κάβουρας, Διονύσης Α. | el |
dc.date.accessioned | 2015-04-29T09:53:36Z | |
dc.date.available | 2015-04-29T09:53:36Z | |
dc.date.issued | 2015-04-29 | |
dc.identifier.uri | http://hdl.handle.net/11400/9240 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://www.sciencedirect.com/science/article/pii/S0895611104000515 | en |
dc.subject | Breast ultrasound | |
dc.subject | Breast lesion discrimination | |
dc.subject | Υπερηχογράφημα μαστού | |
dc.subject | Διάκριση της βλάβης του μαστού | |
dc.title | Development of the cubic least squares mapping linear-kernel support vector machine classifier for improving the characterization of breast lesions on ultrasound | en |
heal.type | journalArticle | |
heal.classification | Medicine | |
heal.classification | Biomedical engineering | |
heal.classification | Ιατρική | |
heal.classification | Βιοϊατρική τεχνολογία | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh00006614 | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh85014237 | |
heal.classificationURI | **N/A**-Ιατρική | |
heal.classificationURI | **N/A**-Βιοϊατρική τεχνολογία | |
heal.identifier.secondary | doi:10.1016/j.compmedimag.2004.04.003 | |
heal.language | en | |
heal.access | campus | |
heal.recordProvider | Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. | el |
heal.publicationDate | 2004 | |
heal.bibliographicCitation | Piliouras, N., Kalatzis, I., Dimitropoulos, N. and Cavouras, D. (July 2004). Development of the cubic least squares mapping linear-kernel support vector machine classifier for improving the characterization of breast lesions on ultrasound. Computerized Medical Imaging and Graphics. 28(5). pp. 247-255. Elsevier Ltd: 2004. Available from: http://www.sciencedirect.com/science/article/pii/S0895611104000515 [Accessed 22/06/2004] | en |
heal.abstract | An efficient classification algorithm is proposed for characterizing breast lesions. The algorithm is based on the cubic least squares mapping and the linear-kernel support vector machine (SVMLSM) classifier. Ultrasound images of 154 confirmed lesions (59 benign and 52 malignant solid masses, 7 simple cysts, and 32 complicated cysts) were manually segmented by a physician using a custom developed software. Texture and outline features and the SVMLSM algorithm were used to design a hierarchical tree classification system. Classification accuracy was 98.7%, misdiagnosing 1 malignant an 1 benign solid lesions only. This system may be used as a second opinion tool to the radiologists. | en |
heal.publisher | Elsevier Ltd | en |
heal.journalName | Computerized Medical Imaging and Graphics | en |
heal.journalType | peer-reviewed | |
heal.fullTextAvailability | true |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: